next up previous contents
Next: The cross section Up: The physical processes producing Previous: The physical processes producing   Contents


Proton-Proton collisions

In collisions between high energy protons and nuclei, pions of all charges, $ \pi^+$, $ \pi^-$ and $ \pi ^0$ are produced as secondaries. $ \pi^+$ and $ \pi^-$ generate electrons and positrons, while the neutral $ \pi$ decades in a pair of gamma photons. The energy of the emitted gamma is, in the reference frame of the $ \pi ^0$ , half of the $ \pi ^0$ rest mass, and therefore the observed energy of the gamma ray depends on the momentum of $ \pi ^0$ respect to the observer.If $ f_p$ is the spectra of protons

$\displaystyle f_p = \frac{dN_p}{dA \; dt \; d \Omega \; dE_p} 
 \;\; \left[ \frac{proton}{cm^2 \; sec \; sr \; MeV} \right]$ (1.8)

the $ \pi$ emissivity per hydrogen atom is :

$\displaystyle q_{\pi}(E_{\pi}) = 4 \pi \sigma_{pi} (E_{p}) f_p(E_{p}) \frac{1}{k_{\pi}} 
 \;\; \left[ \frac{\pi}{sec \; MeV \; H} \right]$ (1.9)

where $ E_{\pi}$ is the energy of the emitted pion, $ E_p$ is the energy of the proton, $ \sigma_{\pi}$ is the cross section for $ \pi$ production through proton-proton collision (see par. 1.5.1). $ k_{\pi}$ is the mean fraction of proton kinetic energy transferred to the neutral pion, and is about 0.17 [Mori, 1997]. $ E_{\pi}$ and $ E_p$ then are related by:

$\displaystyle E_{\pi}=\frac{E_p - m_p c^2}{K_{\pi}}$ (1.10)

$ m_p$ is the proton rest mass. The gamma-ray emissivity results to be:

$\displaystyle q_{\gamma}(E_{\gamma}) = 2 \int^{\inf}_{E_{min}} \frac{q_{\pi}(E_{\pi})}{p_{\pi}c} dE_{\pi} 
 \;\; \left[ \frac{ph}{sec \; MeV \; H} \right]$ (1.11)

where $ E_{\gamma}$ is the photon observed energy, $ p_{\pi}$ is the pion momentum and $ E_{min}$ is the minimal energy necessary for a pion to create a photon of energy $ E_{\gamma}$ (in the observer reference system):

$\displaystyle E_{min}=E_{\gamma} + \frac{m_{\pi}^2 c^4}{4 E_{\gamma}}$ (1.12)

where $ m_{\pi}$ is the neutral pion rest mass. The emissivity per unit volume of interstellar matter is then:

$\displaystyle g_{pp}=q_{\gamma}n_{H}
 \;\; \left[ \frac{ph}{cm^3 \; sec \; MeV} \right]$ (1.13)

where $ n_{H}$ is the density of H atom (both atomic and molecular).

Subsections
next up previous contents
Next: The cross section Up: The physical processes producing Previous: The physical processes producing   Contents
Andrea Giuliani 2005-01-21