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Clustering spectra 3

e Cluster Chandra observations based on energy spectra

® Summarize Chandra spectra in a lower-dimensional space (— embedding
space)
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Preprocessing 4

e Spectra have a variable number of points — resampling using 400 points
with a log scale (denser sampling for low energies)

* Fluxes depend on distance, not intrinsic properties — MinMax
normalization
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Transformer autoencoder 6

* Goal: reconstruction of pre-processed spectra

e RNN-based vs Transformer-based autoencoders — transformer
autoencoders focus on relevant spectral regions

e Evaluation: reconstruction error (MAE)
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Transformer autoencoder 7

e Good reconstruction independently on the hyperparameters
e Reconstruction = smoothing of the preprocessed spectra
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Transformer autoencoder 8
e Good reconstruction independently on the hyperparameters

e Reconstruction =— smoothing of the preprocessed spectra
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Clustering (8 classes)

e Best clustering
output visualized
with a contingency
matrix (normalized
confusion matrix)

e Cluster-class
assignment
optimized to
maximize trace

¢ Balanced
accuracy: ~ 40%
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Clustering (2 classes)

® Best clustering output
visualized with a
contingency matrix
(normalized confusion
matrix)

e Cluster-class assignment
optimized to maximize
trace

e Balanced accuracy: = 70%
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Latent space interpretation (AGNs)

Ly

Do latent dimensions have a physical meaning? — symbolic regression
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Learning from multimodal data

e Large multimodal datasets in astronomy — how to learn from multiple

modalities?
¢ Idea: align X-ray data (event files) embeddings and scientific texts (from

ADS) embeddings using contrastive learning
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Contrastive learning

Regularized InfoNCE loss to align modalities into a 64-dimensional shared
space

L= LInfoNCE + 7‘£reg
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Regression

¢ Combined modality better than individual modalities in regression
e Text information enriches light curve data for hardness ratios

Variable
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Modality Improvement
Text Data Both Absolute %
040 029 0.22 0.07 24%
032 0.27 0.25 0.02 7%
0.27 0.22 0.17 0.05 23%
023 0.22 0.21 0.01 5%
515 243 227 0.16 7%




Nearest Neighbor search and Anomaly Detection

e Aligned representations show semantically narrower domain than
pre-alignment

e Aligned neighbors exhibit smaller variability in spectral properties

e Anomaly detection effectively isolates unique sources (e.g., ULXs)

Name ObsID Hardygs Type
2CXO J095550.1+694046 10542 0.92 ULX
2CX0 J223940.2+751321 8588 -0.13 YSO

2CXO0 J201536.9+371123 11092 0.64 Cataclysmic




Focus on highly variable X-ray sources

* Focus on observations with high variability (var_prob_b > 0.9)
Information from scientific texts and event files

Goal: Identification of patterns and anomalous observations, including rare
objects

Idea: model embeddings as complex networks (graphs with a non-trivial
topology)



Method

e Extract embeddings from both observational data and scientific texts.
e Compute similarity matrices and construct a weighted undirected graph.
e Apply different thresholds (r = {0.5,0.7,0.9}) to analyze network structure.
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Network visualization

e Degree: number of edges connected with a node (= number of
observations similar to a given one)

e Core-periphery structure (core: similar observations; periphery: anomalies)

® Low threshold (r) = isolation of very anomalous observations
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YSO 214 1042 83%
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Conclusions

Transformer-
based
autoencoders
are effective
for spectral
reconstruction

Small latent
vectors allow
clustering

The latent
space has a
physical
meaning




Conclusions

Alignment of
multimodal
data allows

better
regression and
anomaly
detection

Complex
networks
highlight
anomalous
observations
within highly
variable
sources

Complex
networks
exhibit a
core-periphery
topology




