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Summary
● Introduction

● Deep Learning models for the AGILE space mission

● Deep Learning models for the COSI space mission

● Deep Learning models for the Cherenkov Telescope Array Observatory
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Context and Research Goals
● This research aims to develop Deep Learning (DL) and Quantum 

Deep Learning models to analyze the data acquired by the AGILE 
instruments to detect and localize Gamma-Ray Bursts.

● We are developing a DL model for COSI to localize the GRBs using 
simulated data acquired by its detectors. 

● We developed DL models to analyze the simulated data of the 
Cherenkov Telescope Array Observatory. 

● We developed DL models to analyze sky maps as 2D images and 
time series  and we approached different classes of problems:

○ Binary Classification
○ Anomaly Detection
○ Regression  
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AGILE satellite
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● AGILE is an ASI space mission launched in 2007, designed to study X-ray and 
gamma-ray astronomy. AGILE terminated the in-orbit operations on February 
2024, after almost 17 years of successful scientific observations.



COSI satellite
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● The Compton Spectrometer and Imager (COSI) 
is a NASA Astrophysics Small Explorer satellite 
mission.

● COSI is a soft gamma-ray survey telescope 
(0.2-5 MeV) planned for launch in 2027.

● It is designed to probe the origins of Galactic 
positrons, uncover the sites of nucleosynthesis in 
the Galaxy, perform pioneering studies of 
gamma-ray polarization, and find counterparts 
to multi-messenger sources. 

● COSI’s compact Compton telescope combines 
improvement in sensitivity, spectral resolution, 
angular resolution, and sky coverage to 
facilitate groundbreaking science.  

COSI Instrument

GeDs

BGO

https://cosi.ssl.berkeley.edu/


Photos: Gabriel Pérez Dia and Marc-André Besez

Roque De Los Muchachos (La Palma)

Paranal (Chile)

Cherenkov Telescope Array Observatory 

With tens of telescopes among two sites CTAO will 
have unprecedented sensitivity, high angular 
resolution, broad sky coverage and a wide 
energy range (20 GeV - 300 TeV).

CTAO will optimise its scientific return with a 
real-time analysis system, enabling the scientific 
community to become a key player in the 
multiwavelength and multimessenger landscape 
of modern astrophysics.
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Deep Learning Models for AGILE
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Detection of GRBs in the AGILE/GRID data
● We developed a Convolutional Neural Network (CNN) to detect GRBs in 

AGILE/GRID sky maps (0.1–10 GeV) and compared the results obtained 
with the standard aperture photometry (Li&Ma) methods.

● The maps have a size of 100 × 100 pixels and a bin size of 0.5°. The 
integration time used to generate these maps is 200 seconds.

● We simulated three datasets of 40 000 maps for the training, testing, and 
validation phases. The CNN is trained with a supervised learning 
technique, so the datasets are labeled.  

● Half of the maps are background-only maps, and the other half have a 
simulated GRB in a radius of 1° from the center.

● The GRB fluxes used for the simulations are randomly generated from a 
distribution obtained from the Second Fermi/LAT GRB Catalog, rescaling 
the fluxes to fit the AGILE/GRID energy range. 
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Model training and evaluation
● We developed this binary classification model using 2D convolutional 

layers, max polling and dropout layers. 

● The CNN was trained for 5 epochs using a batch size of 200 maps.

● The model reached on the test set an accuracy of 98.2 %

● We calculate the p-value distribution using  datasets of ten million 
simulated maps for three different background levels.

● We obtained different p-value distributions that are used to calculate 
the statistical significance of a detection obtained with the CNN model.
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Detection of GRBs in the AGILE/GRID data
● We evaluated the CNN using the Fermi-LAT, Fermi-GBM, and Swift-BAT GRB catalogs using data from 

2010 to 2020.

● We analyzed AGILE/GRID data covering the trigger times and positions of cataloged GRBs with both the 
CNN and the standard Aperture Photometry methods. 

● The CNN detected 21 GRBs with a sigma > 3 from the list of GRBs obtained with Fermi and Swift 
catalogs. Using the same parameters, the Aperture Photometry detected only two GRBs from that list.
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AGILE/GRID - Improvement

● To cover science alerts with larger localization error (i.e. Gravitational 
Waves), we trained a new DL model to detect GRBs in a maximum 
radius of 20 degrees from the center of the map.

● In addition, we implemented a new DL model to localize the GRB 
position in maps classified from the first model as containing a source. 
This model performs a regression on the coordinates of the GRBs.

● The classification model achieves an accuracy of 97 %, while the 
localization model has a mean error of 0.7 degrees.
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Anomaly detection in the AGILE 
Anticoincidence system ratemeters

● We developed a Deep Learning model to detect GRBs in the 
ratemeters of the AGILE Anticoincidence System.

● The Anticoincidence System comprises five independent 
panels surrounding the AGILE detectors 

● This system aims to reject charged background particles. 

● It can also detect hard X-ray photons in the energy range of 
50 - 200 keV. 

● The ACS continuously records each panel count rate in 
telemetry as ratemeters (RM) data, with 1.024 seconds 
resolution. Each ACS panel RM count rate constitutes a time 
series. 
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Neural Network Design and Training
● We developed a Deep Learning model to detect GRBs in the 

ratemeters of the AGILE Anticoincidence System.

● The ACS can detect GRBs and solar flares. We want to detect 
GRBs so we avoided using the panel oriented toward the 
Sun due to its sensitivity to solar flares, which interferes 
with GRBs detection. 

● We have to apply a detrending procedure to remove orbital 
and spinning modulations from the data.

● we decided to analyze time windows of 140 seconds with 
bins of 1.024 seconds, by analyzing the T_50 and T_90 of 
third Swift/BAT GRB catalog (Lien et al. 2016). 
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Neural Network Design and Training
● We implemented the model with a 1D Convolutional Neural 

Network autoencoder.

● The autoencoder aims to encode the input data in a 
representation with reduced dimension and then decode this 
representation to the original input object, minimizing the 
reconstruction error.

● An autoencoder can be used for anomaly detection because 
when the input is different from the usual (e.g. a GRB is 
present), the reconstruction error is higher. 

● We trained the model with an unsupervised technique using 
5000 background-only time series randomly extracted from 
the ACS data archive, excluding time windows with anomalies 
(e.g., South Atlantic Anomaly passages and known GRBs)
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Results on real GRBs
● To define the thresholds at different sigma levels, we calculated the 

p-value distribution using 15 million background-only time series 
generated using the bootstrap data augmentation technique 

● We evaluated the trained model using the list of GRBs present in the 
GRBweb catalog (2010-2020), which collects GRBs from several 
observatories. 

● We extracted from the AGILE archive the time series covering the 
trigger time of the catalog.

● The model detected 72 GRBs, 15 of which were detected for the first 
time in the AGILE data  
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Anomaly detection on MCAL data

● We trained a DL model following the method used with the 
anticoincidence ratemeters to detect GRBs in the 
MiniCALorimeter (MCAL) ratemeters.  

● We compared the preliminary results obtained with this method 
analyzing the MCAL ratemeters of 2020 and 2019 with the 
second MCAL GRB catalog, confirming the detection of 26 GRBs. 

● We plan to analyze the full AGILE data archive. 
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Predict the ACS background
● Goal: predict the background count rates of the AGILE ACS system 

using the satellite orbital and attitude parameters. 

● We can use the predicted counts of the background to detect 

GRBs where the differences with the acquired counts are higher 

than a predefined threshold.

● We used the ACS top panel for this work because it is less 

influenced by solar flares.

● There are three main trends that impact the AGILE ACS data: 

○ i) the daily trend

○ ii) the orbital trend with a period of ∼ 94 min

○ iii) the spinning trend.
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Deep Learning model

● We trained a Feedforward Neural Network model to perform a 

regression task using 20 million orbital configuration parameters.

● We calculated the difference between the real and predicted counts of 

the test dataset to check the accuracy of the model.  The model has a 

mean prediction error of 3.8%.

● We can apply this detection method to raw data without applying the 

detrending algorithm that can introduce artificial anomalies.

● We calculated the p-value distribution using 20 million light curves to 

define the thresholds at different sigma levels.
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Detect GRBs using the predicted values

● We tested this detection method using the GRB web catalog 
and extracting light curves from the ACS archive (2019-2022).

● The method detects 39 GRBs with sigma > 3. Four GRBs are 
new detections that were not detected in previous analyses.

● We also compared the results obtained with the light curve of 
the Fermi/GBM detector because they have a similar energy 
range. ACS (50-200 keV) and Fermi/GBM (50-300 keV)

● We are investigating other possible applications of this kind of 
Deep Learning model to predict the background level of the 
AGILE detectors.
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Simulation of GRB light curves
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Deep Learning to simulate GRB light curves
● Goal: simulate the light curves of GRBs using Deep Learning generative architectures such as Generative 

Adversial Network (GAN) and Variational Autoencoder (VAE).

● The training of the DL model is done using the light curves of the fourth Fermi-GBM GRB catalog after 

applying filters to remove light curves not suitable for this study.

● There is a work in progress to use conditional/controlled GAN to generate dataset with specific GRB 

properties (e.g. duration.). In addition, we are evaluating the Physics-Informed Neural Network. 
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Real Time 
Series

Generated 
Time SeriesR. Falco et al. “A new Deep Learning Model for Gamma-Ray Bursts’ light 

curves simulation” ML4ASTRO, Catania 8-12 July, 2024. 



Quantum Deep Learning
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Quantum Computing and Deep Learning

● INAF is working on Quantum Computing inside the Spoke 10. We provide scientific use cases to test 

Quantum Computing technologies.

● At INAF/OAS Bologna we are working in the context of Quantum Machine Learning.

● We are developing Quantum Deep Learning models to detect Gamma-Ray bursts from sky maps 

and time series. 

24INAF Spoke 10 (quantum computing) members: A. Bulgarelli, C. Burigana, V. Cardone, F. Farsian, M. Meneghetti, G. Murante, A. 
Rizzo, R. Scaramella, F. Schillirò, V. Testa, T. Trombetti.

Credits: Alessandro Rizzo, 
Farida Farsian



Why Quantum Computer?

● Goal: Develop Quantum Deep Learning models to exploit the features of Quantum 

Computers for the analysis of the data acquired by the AGILE satellite.

● Compare the results obtained with Quantum Deep Learning models with those obtained with 

classical Deep Learning models to check for improvements (e.g., Quantum speed-up, fewer 

parameters etc)

● We used as benchmark the models already developed with classical Deep Learning models. 

Also the dataset of AGILE maps and time series are the same. 

● At the moment we are working also on Cherenkov Telescope Array Observatory and COSI 

simulated data.
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Embedding Techniques

● To use classical data with quantum computers we have to represent it as a quantum state, 

so that it can be processed by a quantum computer.

● The classical data can be encoded into a quantum state by using a quantum circuit.

● A quantum embedding technique takes a classical datapoint x and translates it into a set of 

gate parameters in a quantum circuit, creating a quantum state.

● We evaluated three embedding techniques:

○ Angle embedding

○ Amplitude embedding

○ Data re-uploading 
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Frameworks

● We used three different frameworks for the implementation of the 

quantum models:

● Tensorflow-Quantum is an open-source framework developed by Google for 

rapid prototyping of hybrid-quantum classical models. It combines 

TensorFlow for classical machine learning with quantum computing.

● Qiskit is an open-source software development kit, developed by IBM 

Research. It is possible to run the circuits on real quantum devices with the 

IBM Quantum Experience.

● PennyLane is an open-source software framework for quantum machine 

learning. It can be used with different quantum hardware and simulators. It 

provides interfaces with classical machine learning frameworks.
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Implemented Architectures
● We used both Hybrid and Fully quantum approach to implement models that can analyze the time 

series and the sky maps:

● Hybrid: The feature extraction is made using a quantum convolutional neural network, and the final 

classification is done with a classical neural network.

○ Pros

■ Reduced decoherence effect (on real QC) because the quantum circuit is shorter

■ Flexibility to combine the benefits from quantum and classical models
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Results
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Approach Framework Accuracy on 
Training Dataset

Accuracy on 
Test Dataset

Parameters Qubits

Classical Keras & TensorFlow 96.5% 93.9% 56 //

Fully 
Quantum

Qiskit 91.1% 90.7% 14 7

Time Series GRB classification

● The results shows that the Quantum DL models can achieve a comparable accuracy with the 

classical models but using less parameters in the model. 

● The next step is to test these models with real quantum computers.

F. Farsian et al.: “Benchmarking Quantum Convolutional Neural Networks for Signal Classification in Simulated 
Gamma-Ray Burst Detection”, 2025 submitted to IEEE Computer Society, proceeding of “Astrophysics and 
Cosmos Observation: HPC and Big Data Management” conference.

A. Rizzo et al.: “Quantum Convolutional Neural Networks for the detection of Gamma-Ray Bursts in the AGILE 
space mission data”, ADASS 2023, https://arxiv.org/pdf/2404.14133.

https://arxiv.org/pdf/2404.14133


Deep Learning for COSI GRB localization
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Localization of GRBs using BGO and GeDs data

● The model aims to localize the GRBs using the count rates 

of the BGO shield composed of five panels.

● In addition, to improve the results, we used the counts 

detected by the Germanium detectors (GeDs).

● We simulated 50 000 GRBs (without background) at 

different sky coordinates to create our labeled dataset.

● We calculated the ratios between the integral of counts 

detected by different panels to have a measure 

independent from the flux of the GRB.

● These ratios are the input of the DL model and the GRB 

positions are the labels.
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Model Training
● The model used is a feedforward neural network with four hidden fully connected layers. The model 

has 43k trainable parameters.

● We use dropout layers for the regularization and to prevent overfitting.

● The activation functions are LeakyReLU and the cost function is the Mean Square Error.

● The model is trained for 185 epochs using the early stopping feature from Keras. 
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First results

● Mean localization error of 12.2° for the full sky and  7.2° for Theta > 90.

● The error is higher when Theta < 60° (in the aitoff plot >30)
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Conversion of angles in sine and cosine

● Instead of using theta, phi as target coordinates for the models we converted the two 

angles expressed in degrees to sine and cosine values. 

● This avoid the “wrap around problem” -> jump from 360 to 0 

● High localization error when theta is around 45°. 
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before: 
12.2° of mean localization error. 7.2° if theta > 90°

after: 
6.8° of mean localization error. 4.1° if theta > 90°



Additional data: GeDs counts

● We can add the counts collected by the GeDs to improve the 
localization when the angle Theta < 60° (see figure). 

● We use the four columns of GeDs divided into two layers -> 8 count rates 
and we calculate the ratios between these count rates

35
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Final Results
● We trained again the model using both the count rates from BGO and GeDs

● The results with BGO data only have an issue at Theta near 45 ° but by adding the GeDs 

data this issue is solved.

With GeDs: mean error is 4.8°
Loc. error at 40-50° is 8.4°Only BGO: mean error is 7.2°

Loc. error at 40-50° is 31°
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Summary of results

● With the current simulations (without background) the model can localize a GRB with a mean 

localization error of 4.8° using the data of BGO and GeDs.

○ These position determinations will complement COSI's Compton localizations.

● When Theta ≈ 45° the BGO data cannot localize the source with a low error. We introduced the 

GeDs counts to help the model reduce the localization error from 31 to 8.4°.

● We are now evaluating the impact of the background noise and developing an additional 

method (used by GBM) based on the chi-squared fitting.
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Deep Learning to analyzie CTAO sky maps

  Credits by Ambra Di Piano
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Deep Learning Enhancements
CONTEXT:
❖ high level Cherenkov data analysis (DL3) in real-time 

➢ 1ACADA - 2Science Alert Generation
❖ machine learning to overcome limitations of real-time

➢ variability of conditions, degraded sensitivity, lack of knowledge

GOALS:
❖ perform background-subtraction without requirements on

➢ knowledge on background 
➢ knowledge on target coordinates

❖ perform candidates localisation without requirements on
➢ knowledge on background 

MODELS:
❖ Cleaner: CNN autoencoder

➢ encoding with Conv2D and AvgPooling2D
➢ decoding with Conv2D and UpSampling2D
➢ trained with two sets of data: noisy and clean counts map

❖ Regressor: CNN regressor
➢ combination of Conv2D and MaxPooling2D
➢ dense neurons and dropout layers
➢ trained with a set of data and a set of known coordinates as labels
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Simulations
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Fixed parameters:
❖ One source in the FoV
❖ Flux and spectral model (crab-like)
❖ Array (4LST) from prod5-v0.1
❖ Binning (200x200) and pixel (0.025 deg)
❖ Exposure (100 s) and smoothing (5𝜎)
❖ IRF background-subtraction

Random parameters:
❖ Background/IRFs (zenith and NSB)
❖ Pointing and source coordinates
❖ Source offset (within FoV)

Planned variations (coming next):
❖ Vary exposure and flux
❖ Multiple sources in FoV
❖ Ring background-subtraction (known targets)
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Background Subtraction

ON EXCESS
percentage error

EVALUATION METRIC - SOURCE EXCESS COUNTS

For each map in the sample we compute the source excess 
counts, by integrating the number of photons within the 
source region after applying the CNN denoising.

CNN EXCESS = ∑ DENOISED SOURCE COUNTS

We use the standard aperture photometry method as a 
reference, from the photometric excess counts we subtract 
the CNN excess counts for each map in the sample.

ERR = (CNN - PHOTOMETRIC) / PHOTOMETRIC

We then compute the error percentage E(%), where NS is 
the photometric excess and NS

cnn is the CNN excess.



LOCALISATION ERROR
(gammapy vs cnn)

random zenith angle dataset

EVALUATION METRIC - ANGULAR SEPARATION

❖ CNN-regressor
➢ 68% containment radius of ~0.07° 
➢ longer tail 
➢ slightly lower accuracy
➢ No IRF, background, or target

❖ gammapy
➢ 68% containment radius of ~0.04°
➢ shorter tail
➢ slightly better accuracy
➢ Requires IRF, background or target
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Candidate Localization

A. Di Piano et al., “Machine Learning Enhancements for Real-Time Scientific Analysis of Cherenkov Telescope 
Data”, ADASS, Nov 2024, Valletta (Malta) Proceeding to be published as part of ASP Conference Proceedings



Anomaly detection to detect GRBs in the 
CTAO light curves 

Credits Leonardo Baroncelli
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Context

➢ This work introduces an anomaly detection technique for identifying GRB events from 
light-curves in real-time analysis scenarios with short-term exposures.

➢ Anomaly detection setting:
○ We define normal data as the signal received from a celestial region devoid of any 

sources but the background. 
○ Conversely, anomalous data represents the signal emanating from the same celestial 

region in which an astrophysical source appears in addition to the background.

➢ Use case:
○ We simulate the data acquisition of a sub-array configuration of CTAO (4 LSTs in the 

North site, pointing at the zenith angle of °40 degrees (extra-galactic observations).
○ We compute time series of flux measurements. 

➢ Model:
○ Autoencoder architecture (CNN or RNN) trained with unsupervised learning.
○ Trained to reconstruct the multivariate time series of flux points of normal data.
○ We do not input the whole time series to the model, but we extract sub-windows.
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Inference

➢ During inference, the model’s reconstruction error is used as the anomaly score.
➢ The anomaly score serves as the test statistic for the p-value analysis, where the null hypothesis 

represents the absence of a GRB event in the data.
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To calculate p-values, we employ a background-only dataset consisting of 
approximately 108 simulated photon lists converted into light curves.



Testing
➢ The GRB templates used in the simulations come from the POSyTIVE catalog (M.G Bernardini, 2019).

○ Peak flux criteria (selecting 419 templates). 
○ Simulating 500s of observation. GRB starts at tonset=250s. Only the GRB afterglow model. 
○ Short-term analysis scenario: 1 sec integration time.
○ Flux sub-windows of 5 points.

➢ We compute significance values for each subsequence within the light curves: a detection was 
considered successful if the significance value reached a threshold of 5.
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Results
➢ We then compared the cumulative number of detections for both our method and Li&Ma’s 

technique, considering only the earliest detection event for each light curve. 

➢ Our technique achieves a higher number of GRB detections.
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Conclusions
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Conclusions and Future Works
● We developed Deep Learning and Quantum Deep Learning models to detect GRBs in the sky 

maps and time series generated with the data acquired by the detectors onboard the AGILE space 
mission.

● The results obtained prove the capability of neural networks to analyze high-energy 
astrophysical data, and in the analyzed context, they outperform classical analysis methods.

 
● We developed a Deep Learning model to localize the GRBs using the COSI BGO and GeDs 

simulated data. We still have to evaluate the impact of the background noise. 

● We developed several Deep Learning models to detect and localize GRBs in CTAO simulated data.

● Our goal is to use the knowledge acquired during the development of Deep Learning models for 
AGILE for the next generation of high-energy projects such as CTAO and COSI.
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