

From high-z protoclusters to local BCGs: Challenges for simulations

Stefano Borgani Dept. of Physics - University of Trieste INAF – Astronomical Observatory of Trieste INFN – National Institute for Nuclear Physics – Trieste ICSC - National Center for HPC, Big Data and Quantum Computing

I. Simulating protoclusters: environment of the early BCG assembly

 I.a Properties of the proto-ICM and their low-z fossil record
 I.b Star formation rates in protoclusters

 II. Connecting to the properties of the low-z BCGs

 II.a Stellar masses and SFR of BCGs
 II.b Metal share in ICM and stars

PART 1: Simulating Protoclusters

How does a galaxy cluster look like at z>2 ?

HST-ACS image of MRC 1138-262
The "Spiderweb" galaxy (Miley+06)
→ Complex dynamics of galaxies merging into the FR-II radio galaxy

→ "Flies" moving with v_{los} of up to ~10³ km s⁻¹

How typical is all this in the Λ
 CDM structure formation paradigm?

Dianoga Simulations

Courtesy of P. Rosati

The Dianoga Set with OpenGADGET3

→ 29 cluster Lagrangian regions resimulated at high resolution (Bonafede+12; Rasia+15; SB+24) m_{*}=2.6 10⁶ h⁻¹ M_☉; ε_{*}=250 cpc

OpenGADGET3 code: TreePM + SPH/MFM;

Hybrid MPI/OpenMP/OpenACC parallelism

➔ Hydro-1: SPH (Beck+16)

- Higher-order kernels, "Wake-up" for time-step of gas particles, Time-dependent artificial viscosity, Artificial conduction
- → Hydro-2: MFM (Groth+23):
- Astrophysics:
- Cooling + SF + SN feedback (Springel & Hernquist 03; Valentini+18), Chemical enrichment (Tornatore+07), AGN feedback (Fabjan+14; Steinborn+15)

(Bassini et al. 2021)

Adjust the parameters of
 feedback to reproduce the observed
 scaling between SMBH masses and
 host stellar masses

Predict the correct SMF of cluster galaxies

Saro, SB et al. 2009

- \rightarrow SN-driven winds: SFR ~ 1750 M_{\odot} yr⁻¹
- + AGN feedback: SFR ~ 1300 $M_{\odot} \text{ yr}^{-1}$
- Significant amount of diffuse ICL already in place at z=2.16

Saro, SB et al. 2009

Progenitor of a today massive galaxy cluster:

 $M_{200}(z=0)=1.5 \times 10^{15} h^{-1} M_{\odot}$

<u>At z=2.1</u>: hosting a hot, X-ray bright and metalenriched proto-ICM:

$$L_{0.5-2}$$
= 1.4 x 10⁴⁴ erg s⁻¹
T_X=3.8 keV
Z_{Fe}= 0.57 Z_o

A deep (700 ks) Chandra exposure on the "Spiderweb"

→ Large Chandra program (700 ks) to characterize the proto-ICM and the AGN population in the "Spiderweb" protocluster (*PI: P. Tozzi – Tozzi+2022 ; Lepore+2023*)

A high-sensitivity ALMA observation of the

Total State State

"Spiderweb"

→ ALMA Cycle-6 proposal to detect the SZ signal around the Spiderweb galaxy (PI A. Saro)

→ ALMA+ACA observations secured the detection of the SZ signal from the proto-ICM (significance at $\simeq 6\sigma$)

→ Robust evidence for a pressurized athmosphere around the Spiderweb galaxy at z=2.16

Comparison with simulations: generation of realistic mock ALMA observations

→ Consistent with being associated to a virialized halo of mass ~ 3 x 10¹³ M_☉

Biffi et al. 2017

AGN feedback causes:

More widespread IGM enrichment at high redshift

Suppression of star formation

Many fewer metals locked back in later star formation

SFR $[M_{\odot}/yr]$

Low-z ICM metallicity as a fossil record of feedback history

Biffi et al. 2018 (see also Fabjan+2010, McCarthy+2015)

Star formation in "Planck blobs" with Herschel

Granato+2015

- Analyze progenitors of 24 clusters with $M(z=0) > 10^{15} M_{\odot}$
- Use GRASIL-3D to account for dust reprocessing
- Mock IR and sub-mm images at z=2

For the two observed clusters:

- → Flux_{HFI}~ 1200 mJy (@857 GHz)
- Far larger than obtainable from simulations
- Clemens+2014: SFR within Planck beam for two z~2 clusters: [2.9 – 7] x 10³ M_o/yr

Q: how to get such a high SFR at z=2, still smaller BCGs by z=0?

On the properties of simulated proto-clusters

Stellar mass density maps (Esposito et al. 2024, in prep.)

→ <u>Larger circles:</u> radius of the circles centered on the main cluster progenitor and containing 80% of the DM particles identified within R_{200} at z=0

→ <u>Smaller circles:</u> R₂₀₀ at z=2.2

On the properties of simulated proto-clusters

(Esposito et al. 2024, in prep.)

Relationship between mass and velocity dispersion

 → In line with extrapolation from calibration from simulations at z=0
 → Good agreement with results from Shimakawa+2014

Comparison between observed and simulated SMF:

Generally consistent, especially in the high-mass end

Exception of Edwards+24, which well agrees in shape but with too high normalization

(Bassini et al. 2021; Esposito et al. 2024, in prep.)

Model-prediction of the main sequence at z~2 below the observed one, both in the field and in protocluster

Result almost independent of the adopted model of SF

- •0.8 SFR of the Spiderweb much reduced when including FIR data
- 0.6 (Seymour+2012; Drouart+2014), besides
 UV dust-corrected fluxes (Pannella+
 2024, in prep)

"Only" a factor 2-3 above simulation predictions

(Esposito et al. 2024)

Comparison with ALMA-based observational results for Main-Sequence galaxies at z=2.2

- Correct depletion time predicted by simulations

 Consistent star formation efficiency
- Too small fraction of cold gas from simulations ->
 - (a) Exceedingly efficient feedback;
 - (b) too much early gas consumption (but SMF is still OK....)

(Bassini et al. 2021)

Apparently a common feature
 of several semi-analytical and full
 hydro simulations

Observational trend for
 stronger SFR in (proto-)clusters at
 larger redshift qualitatively
 reproduced by simulations

Trend in simulations weaker than observed

Excess SF at low-z and deficit at high z

Remus+2023

Use <u>Magneticum</u> cosmological boxes to:

- Identify galaxy overdensities at *z=4*
- Verify the descendants to assess whether they end-up in genuine clusters by z=0
- → None of the most massive halos identified at z=4.2 ends up amongst the 15 most massive halos at z=0.2

→ Need for a homogeneous definition of proto-clusters to compare observations and simulations

Comparison of <u>TNG300 & MACSIS</u> predictions on SFR in proto-clusters to observational data → Model predictions ~1 order of magnitude below observed SFR

Similar results for the "empirical model" by Moster+13 and Behroozi+13

Lim+2024

- → Use <u>FLAMINGO</u> simulations (Schaye et al. 2023) to trace SFR in protoclusters
- Compare the total SFR within FoF halos to observational data
- Results in better agreement with observational data

<u>But:</u>

- Still low SFR at z>4?
- 2dex higher SFR than TNG at z=0
- → What about SFR in nearby BCGs?

PART 2: Simulating BCGs

BCG and stellar masses

→ M_{*BCG}-M₅₀₀ close to observations at low resolution (Ragone-Figueroa+2018)

 →At higher resolution different simulations all consistently predict too massive BCGs, especially in massive clusters:
 Bassini+2021 – Dianoga (Gadget-3)
 Bahè+2017 – Hydrangea/C-EAGLE (Gadget-3)
 Tremmel+2019 – RomulusC (ChaNGa)
 Nelson+2024 – TNG-Cluster (AREPO)
 Henden+2020 – FABLE (AREPO)

→ Same result for Dianoga when further increasing mass resolution (by a factor 2.5; SB+2024)

Star formation rates in BCGs

Dianoga (Bassini+2021): SFR (and sSFR) in BCGs too large by ~1dex

- <u>RomulusC</u> (Tremmel+2019):
 simulation of a relatively poor
 - cluster with $M_{200} \sim 10^{14} \text{ h}^{-1} \text{M}_{\odot}$
- some sSFR excess below z~1.5 (t_{Age}~ 4 Gyr), despite quenching

→ <u>FABLE</u> (Henden+2020):

 Still tendency for too large SFR at z~0.2

Metal share in galaxy clusters

Ratio between Fe diffused in the ICM and locked into stars (assumed to have solar metallicity)

Ghizzardi+2021: ICM metallicity from X-COP clusters (XMM-Newton) for which stellar metallicities are also available

- → Fe-share for few clusters
- → Large fraction of overall Fe budget in the diffuse gas

Biffi+2024: comparison with Magneticum simulations
 → Much lower Fe share: larger amount of Fe locked in stars

→ Apparently, not an issue with the ICM Fe content: good agreement with observed M_{Fe,gas} – M_{gas,500} relation

→ Due to excess of star formation in simulations? <u>Quite possible</u>, but then correct ICM Fe content just a coincidence... (see also Molendi+2024)

→ Important implications on feedback mechanism responsible for both circulation of metal-enriched gas and quenching of star formation in protocluster BCGs/massive cluster galaxies!!

Biffi et al. 2024 – Comparison with X-COP clusters

- Simulated profiles slightly steeper than observed
- Overall good agreement within the observational scatter
- → In line with the agreement between ^N simulations and observations in the relation between <u>total Fe mass</u> and <u>total gas mass</u>

Metal share in galaxy clusters

Ghizzardi+2021: ICM metallicity from X-COP clusters (XMM-Newton) for which stellar metallicities are also available

- → Fe-share for few clusters
- → Large fraction of overall Fe budget in the diffuse gas

Biffi+2024 in prep: comparison with Dianoga and Magneticum simulations

→ Much lower Fe share: larger amount of Fe locked in stars

→ Apparently, not an issue with the ICM Fe content: good agreement with observed $M_{Fe,gas} - M_{gas,500}$ relation

- → Due to excess of star formation in simulations?
- <u>Quite possible</u>, but then correct ICM Fe content just a coincidence...
- But no problem at the scale of poor clusters....
- → Which definition of stellar mass? Within which radius? Including ICL? Down to which surface brightness?

→ Important implications on feedback mechanism responsible for both circulation of metal-enriched gas and quenching of star formation in (proto-)cluster BCGs/massive cluster galaxies!! Tracking BH orbits in cosmological simulations

Damiano+2024; arXiv:2403.12600 – Damiano+2025 in prep.

<u>Problem</u>: How to correctly integrate orbits BH particles in a regime where dynamical friction can be mis-represented by the N-body solver, due to the limited mass and force resolution?

Chandrasekhar (1943)

- Homogenous and isotropic distribution of particles with Maxwellian velocity distribution function
- Mass of the ``sea'' particles much smaller than the mass of the BH particle

$$\boldsymbol{F}_{\rm DF} = -4\pi\rho \left(\frac{GM_{\rm BH}}{v_{\rm BH}}\right)^2 F(x)\ln(\Lambda)\widehat{v}_{\rm BH} \qquad F(x) = \operatorname{erf}(x) - \frac{2x}{\sqrt{\pi}}e^{-x^2} \quad ; \quad x = \frac{v_{\rm BH}}{\sigma_v}$$

Hirschmann et al. (2014):

1. $b_{max} = R_{HMS}$

2. Maxwellian distribution of surrounding particles velocities

3. Negligible mass of surrounding particles

Tremmel et al. (2015):

1.
$$b_{max} = softening$$

Correcting for the unresolved dynamical friction

Damiano+2024; arXiv:2403.12600

→ Correct for the unresolved DF by summing over the individual contributions of neighboring particles (i.e. within softening) to the force acting on the BH:

$$\frac{d\mathbf{v}_{\rm M}}{dt}\Big|_{\mathbf{v}} = 2\pi \ln\left[1 + \Lambda(m, \mathbf{v})^2\right] G^2 m({\rm M} + m) f(\mathbf{v}) d^3 \mathbf{v} \frac{(\mathbf{v} - \mathbf{v}_{\rm M})}{|\mathbf{v} - \mathbf{v}_{\rm M}|^3} \qquad \Lambda(m, \mathbf{v}) = \frac{b_{\rm max}(\mathbf{v} - \mathbf{v}_{\rm M})^2}{G({\rm M} + m)}$$

→ Particles within the softening tracing the velocity distribution according to

$$f(\mathbf{v}) = \frac{3}{4\pi\epsilon_{\rm BH}^3} \sum_{i=1}^{N(<\epsilon_{\rm BH})} \delta(\mathbf{v} - \mathbf{v}_{m,i})$$

$$\frac{d\mathbf{v}_{\rm M}}{dt} = \frac{3G^2}{2\epsilon_{\rm BH}^3} \sum_{i=1}^{N(<\epsilon_{\rm BH})} \ln\left[1 + \Lambda(m_i)^2\right] m_i ({\rm M} + m_i) \frac{(\mathbf{v}_{m,i} - \mathbf{v}_{\rm M})}{|\mathbf{v}_{m,i} - \mathbf{v}_{\rm M}|^3}$$

Improving the description of BH dynamics

ALL AND ALL AN

Alternative ad-hoc prescription:

Large dynamical mass: enhance by hand the BH dynamical mass at seeding to amplify the resolved DF → Significant change in the local potential

<u>Continuous repositioning:</u> at every time-step pin the BH on the local minumum of the potential → Merging time-scales completely wrong

Improving the description of BH dynamics

Damiano+2024; arXiv:2403.12600

Improving the description of BH dynamics

Power+2003

Zhang+2019

→ Increasing resolution makes simulations predictions on sinking time-scales approaching analytical predictions

 \rightarrow Faster convergence (and shorter time-scales) predicted when DF correction is

Conclusions

→ General properties of proto-clusters correctly predicted by simulations since a long time:

- Presence of hot (X-ray) and pressurized (SZ) proto-ICM in one proto-cluster (Spiderweb)
- → Intense star formation in assemblying proto-BCGs, along with formation of an ICL component
- Connection between high-z proto-cluster phase and low-z fossile records (*i.e. slope of ICM metallicity profiles*)

BUT:

- High level of SFR in proto-clusters is not trivial to produce in simulations
- Need to quench SF in BCGs and reduce their stellar masses at low redshift
- Too much mass in metals predicted by simulations to be locked in stars but ICM metallicity OK...

Directions to improve simulations:

Deeply revise the SF model to produce bursty SF at z = 2 - 4; Revise the AGN feedback model (a) to rapidly quench SF; (b) to circulate metals in the CGM/ICM before they are locked back in stars.

Q1: How robust is *observed stellar mass* within low-z massive clusters? **Q2:** How much ICL can we reasonably think we're missing in observations?