A radio 269 ms radio pulsar in the gamma-ray binary LS I +61° 303

Alessandro Papitto – INAF OA Roma 11/5/2022 – INAF IASF Milan

nature astronomy

Radio pulsations from a neutron star within the gamma-ray binary LS I $+61^{\circ}$ 303

Shan-Shan Weng ^[D],¹⁴ ^[], Lei Qian ^[D],^{2,3,14}, Bo-Jun Wang^{2,4,5,14}, D. F. Torres ^[D],^{6,7,8} ^[], A. Papitto⁹, Peng Jiang^{2,3}, Renxin Xu^{4,5}, Jian Li^[D],^{10,11}, Jing-Zhi Yan¹², Qing-Zhong Liu¹², Ming-Yu Ge¹³ and Qi-Rong Yuan¹

LSI+61° 303 hosts a young, highly magnetised NS with magnetar behavior

Gamma-ray binaries are **pulsar wind nebulae in a binary environment**

Gamma-ray binaries are progenitors of high mass X-ray binaries

Gamma-ray binaries

Massive star + compact object.

Emission peaks above o.1 GeV

Particle acceleration in a binary system

Accretion-powered **microquasars** vs rotation-powered **pulsars**

Black holes vs Neutron Stars

Gamma-ray binaries

LS I +61 303 spectral energy distribution

Synchrotron (X-rays) + Inverse Compton (γ-rays)

 $L_{VHE} \approx L_{Xray} \text{ 0.14 x 10}^{35} \text{ erg/s}$ $L_{HE} \approx 2.8 \text{ x 10}^{35} \text{ erg/s}$

Hadasch+ 2012

<u>Dubus 2013</u>

Gamma-ray binaries

Massive stellar companion

 $M_{2} = 10-30 M_{0}$

O/Be type

Porb = 4 days - 40 years

Eccentricity = 0.5-0.9

<u>Dubus 2013</u>

High mass Gamma-ray binaries (vs HMXBs)

Emission peaks above 0.1 GeV. Also VHE sources.

Orbital modulation at all wavelengths

Radio emission

Relatively faint in X-rays. Hard X-ray spectra with no cut-off. No X-ray pulses.

What is the nature of the compact object?

What powers particle acceleration?

Pulsar wind nebula in a binary

Accreting microquasar

Particle acceleration at the shock and/or pulsar magnetosphere and wind

Corona, Relativistic jet and/or jet termination shock

Only two gamma-ray binaries detected as radio pulsars (so far)

PSR B1259+63 PSR J2032+4127 Pspin = 48 ms Porb = 1236 d Pspin = 143 ms Porb = 16000-17000 d

Free-free absorption by stellar wind washes pulsations out

$$\pi_{\rm ff} \approx 14.7 \ g_{\rm ff} \left(\frac{\nu}{10^9 \ {\rm Hz}}\right)^{-2} \left(\frac{\dot{M}_{\rm W}}{10^{-7} M_{\odot} \ {\rm yr}^{-1}}\right)^2 \left(\frac{\nu_{\rm W}}{1000 \ {\rm km \ s}^{-1}}\right)^{-2} \\ \times \left(\frac{T_{\rm W}}{10000 \ {\rm K}}\right)^{-3/2} \left(\frac{d}{1 \ {\rm AU}}\right)^{-3}$$

LSI +61°303

0.4

0.2

0.730

Radio emission changing morphology at different orbital phases. Cometary pulsar nebula tail or a preceding jet?

Dhawan+ 2006

A microquasar powering LS I + 61 303? Spectral variability

Sidoli+ 2006; Esposito+ 2007

<u>Nösel+ 2017</u>

Magnetar-like bursts from LS I +61 303

Duration ~ 230 ms Luminosity ~ 10³⁷ (d/2kpc)² erg/s kTbb = (7.0 +/- 0.9) keV Rbb = (0.27 +/- 0.06) km

De Pasquale+ 2008; Munoz-Arjonilla+ 2009; Torres, Rea+ 2012

No other candidate X-ray counterparts in CXO image

Probability to find a magnetar by chance within $1.4' \sim 10^{-5}$

The 500-m Aperture Spherical radio Telescope (FAST)

Largest single dish radio telescope in the world Sperical reflector – radius 300m, aperture 500m L-band (1.05-1.45 GHz) 19-beam array receiver

nature	
astronomy	

Radio pulsations from a neutron star within the gamma-ray binary LS I $+61^{\circ}$ 303

Shan-Shan Weng[®]^{1,14}[∞], Lei Qian[®]^{2,3,14}, Bo-Jun Wang^{2,4,5,14}, D. F. Torres[®]^{6,7,8}[∞], A. Papitto⁹, Peng Jiang^{2,3}, Renxin Xu^{4,5}, Jian Li[®]^{10,11}, Jing-Zhi Yan¹², Qing-Zhong Liu¹², Ming-Yu Ge¹³ and Qi-Rong Yuan¹

2020 January, 7 (exposure 3 hours)

P = 269.15508(16) ms

DM =240.1pc/cm³

Significance 22.4 σ

Time (ms)

Table 1 Observational log						
Middle of observation time	Orbital phase	Exposure time (h)	Sampling time (μ s)	Pulse detected	S _{mean} (μJy)	S _{UL} (μJy)
58,788.7257	0.07	2.2	98.304	No	-	1.61
58,855.5278	0.59	3.0	98.304	Yes	4.40	1.37
59,093.8646	0.58	3.0	196.608	No	-	1.37
59,094.8681	0.62	2.0	196.608	No	-	1.68

The orbital phases are calculated with the radio ephemeris given in ref.³. S_{mean}, mean flux density for detection; S_{UL}, upper limit of the flux density; –, mean flux density for non-detection.

$$S_{\rm mean} = \frac{\eta \beta T_{\rm sys}}{G \sqrt{N_{\rm p} \Delta \nu T_{\rm int}}} \sqrt{\frac{W}{P - W}}$$

Antenna gain:

FAST G = 16 K/Jy

GBT (64m)/Effelsberg (100m) G=1.55/2 K/Jy -> 20/30 hours would have been needed for a detection

Previous upper limits: 4-15 µJy (1.6-9.3 GHz) McSwain+ 2011, Cañellas+ 2012

Table 1 Observational log							
Middle of observation time	Orbital phase	Exposure time (h)	Sampling time (μ s)	Pulse detected	S _{mean} (μJy)	S _{UL} (μJy)	
58,788.7257	0.07	2.2	98.304	No	-	1.61	
58,855.5278	0.59	3.0	98.304	Yes	4.40	1.37	
59,093.8646	0.58	3.0	196.608	No	-	1.37	
59,094.8681	0.62	2.0	196.608	No	-	1.68	

The orbital phases are calculated with the radio ephemeris given in ref.³. S_{mean}, mean flux density for detection; S_{UL}, upper limit of the flux density; –, mean flux density for non-detection.

An additional detection at phase 0.69, but signal mostly absent

Interstellar scintillation produces changes over a few minutes

Pulsar nulling/mode changing? (but usually from older/slower pulsars)

Clumpiness of Be stellar wind (Zdziarski+ 2010)

Variations on minutes/hours observed from PSR B1259-63 (Johnston+ 2005)

Is LS I +61 303 the source of radio pulsations/magnetar bursts?

Radio pulsar position uncertainty = 2.9'

Magnetar burst position uncertainty = 1.4'

Radio pulsar surface density (|b|< 10°) ~ 8 x 10⁻⁵ arcmin⁻²

Probability of two pulsars in 2.9' ~ 4 x 10⁻⁶ (coincident with a gamma-ray binary <10⁻¹⁰)

Simulations of a 2000 magnetar population produce chance superimposition with p = 0.9 x 10⁻³

Measuring the **pulsar timing orbital solution** would prove the association even further

Search for X-ray pulsations in archival data

RXTE	940 ls
XMM-Newton	225 ks
Chandra	100 ks
NICER	166 ks

Orbital solution obtained from the donor radial velocity curves [Casares+ 2005, Aragona+ 2009, Kravtsov+ 2020]

-> Limited sensitivity (both frequency range and exposure)

Upper limit Amplitude ~ 5% (<u>preliminary</u>) Previous upper limits 10-15 % [Rea et al. 2012]

Fermi/LAT gamma-ray pulsation search ongoing [Torres, Papitto, Illiano et al., in prep.]

Ejector Radio/gamma-ray pulsar

<u>Accretor</u>

X-ray pulsar No high energy emission

Pulsar works as an ejector at apastron and as a propeller at periastron [Gnusareva & Lipunov 1985, Stella et al. 1986; Campana et al. 1995]

$$E_{\rm max} \approx 60 \xi^{-1/2} \left(\frac{1 \, \rm G}{B}\right)^{1/2} \, {\rm TeV}$$

Max energy of electrons accelerated in a magnetized shock

(gamma-ray) Pulsar Wind nebula

propeller

$$B \approx 1.7 \left(\frac{\dot{E}}{10^{37} \text{ erg s}^{-1}}\right)^{1/2} \left(\frac{\sigma}{10^{-3}}\right)^{1/2} \left(\frac{10^{12} \text{ cm}}{R_s}\right) \text{G}$$

$$B(R) = B_{ns} \left(\frac{R_{ns}}{R}\right)^3$$
 As high as 10³⁻⁴ G for Bns 10¹³⁻¹⁴ G

TeV emission peaks at apastron; GeV emission peaks at periastron [Torres+ 2012]

Superorbital variability dictated by oscillation of the Be star decretion disc [Ackermann+ 2013]

PSR wind pressure B² P⁻⁴

Accretion prevented as long as:

 $P < 0.24 (B/10^{13}G)^{4/7} (\dot{M}/10^{17}g/s)^{-2/7}$ [Papitto+ 2013]

The observed period (0.27 s) is just within the flip-flop interval

 $Time_{flip-flop}/Time_{PSR} \sim 4 (B/10^{13}G)^{-0.24} (\dot{M}/10^{17}g/s)^{0.27}$

For short orbital periods (<30d), a gamma-ray binary is most likely found in a flip-flop phase

In larger systems (>100d), the ejector phase is longer

```
For L_{sd} = 5 \times 10^{35} \text{ erg/s} and B=10^{13} \text{ G}
we expected P=0.26 s
```

-> remarkably similar to the value later observed!

System age < 10 kyr

Assuming the flip-flop state:

Lsd = 10^{35} – a few 10^{36} erg/s

 $B = a few 10^{12} - 10^{13} G$

To work as an ejector in the whole orbit:

- Higher magnetic fields/spin-down power
- Younger age (< 1-2 kyr)

Gamma-ray binaries & ante-diluvian systems

Ante-diluvian Systems and LS I +61°303

Name	P_S	Porb	е	B_1^{a}	M_2
	(s)	(days)		(G)	(M_{\odot})
J1740-3052	0.57	231.0	0.57	3.9×10^{12}	11.0-15.8
J1638-4725	0.76	1941	0.95	1.9×10^{12}	5.8-8.1
J0045-7319	0.93	51.1	0.81	2.1×10^{12}	3.9-5.3
B1259-63	0.048	1237	0.87	3.3×10^{11}	3.1-4.1
LS I +61°303		26.5	0.63		10-15

Gamma-ray binaries & HMXBs

Pulsar interpretation of gamma-ray binaries

Three (out of eight) are pulsars

Spectral and timing characteristics are similar for all systems

Pulsar wind nebulae are the most common Galactic HE/VHE sources

Magnetar bursts from LS I + 61 303

HE spectrum with an exponential cut-off

nature astronomy

Radio pulsations from a neutron star within the gamma-ray binary LS I $+61^{\circ}$ 303

Shan-Shan Weng ^{[D],14} ^[M], Lei Qian ^{[D],2,3,14}, Bo-Jun Wang^{2,4,5,14}, D. F. Torres ^{[D],7,8} ^[M], A. Papitto⁹, Peng Jiang^{2,3}, Renxin Xu^{4,5}, Jian Li ^{[D] 10,11}, Jing-Zhi Yan¹², Qing-Zhong Liu¹², Ming-Yu Ge¹³ and Qi-Rong Yuan¹

LSI+61° 303 hosts a young, highly magnetised NS with magnetar behavior

Gamma-ray binaries are **pulsar wind nebulae in a binary environment**

Gamma-ray binaries are **progenitors of high mass X-ray binaries**