First eROSITA results on Galaxy Groups and Clusters

Vittorio Ghirardini

eROSITA Timeline

eROSITA on SRG

- 7 mirrors and 7 pnCCD
- Spectral resolution: 75-82 eV FWHM at 1.49 keV
- Focal length 1.6m
- FoV 1 deg diameter
- HEW 18" on-axis, 26" FoV avg.
- Baffles 92% reduction straight light

eROSITA Effective Area

• Effective Area: $\sim 1300 \text{ cm}^2$ (FoV average at 1keV)

eROSITA Grasp

Predehl+20

eROSITA advantages for clusters

Cluster Astrophysics and Cosmology with eROSITA

- Map of dark energy (new physics?)
- Nature of dark matter (WIMP, pBH, ...)
- Inhomogeneity of the Universe
- Baryon evolution

- Chemical enrichment
- Missing baryons
- AGN feedback
- Physics of hot diffuse plasma
- WHIM

Cal-PV program

Milan

24 November 2021

eFEDS - eROSITA 8 / 52

Abell 3158 – Chandra 65 ks

Abell 3158 - XMM-Newton 161 ks

Abell $3158-\mathrm{eROSITA}$ 80 ks

eROSITA analysis

Whelan+21

Milan

24 November 2021

eFEDS - eROSITA

Abell 3266

Abell 3408 (AGN 1H0707-495)

Abell 3391/95

Biffi+21

Veronica+21

24 November 2021

eFEDS - eROSITA

Abell 3391/95 - 60 clumps detected

eROSITA Final Equatorial-Depth Survey

Exposure corrected image in the 0.5–2.0 keV band

eROSITA Final Equatorial-Depth Survey

Exposure corrected image in the 0.5–2.0 keV band

MPE/IKI

eFEDS

eFEDS – Extended sources

Spectral Analysis

7 TMs with Cluster + CXB + NXB

Spectral Analysis

7 TMs with Cluster + CXB + NXB

Imaging Analysis – 2D fitting

Model-Image = $PSF # (Cluster + CXB) \times EXP_v + NXB \times EXP_{nv}$

- Centroid variation
 - Needed when few photons
- Vikhlinin+06 density model
 - Allows for many different density models
- PSF accounted
 - Straightforward in 2D analysis
- Drawback: slower to fit

Imaging Analysis

Imaging Analysis

Luminosity vs Redshift

Selection Function using dedicated simulations

25/52

eFEDS - eROSITA

Scaling relation and selection effects

Scaling relation and selection effects

Ramos-Ceja+21

Scaling relation and selection effects

• Comparison of WL Selection with X-rays

Milan

24 November 2021

eFEDS - eROSITA

Clusters in disguise

• 357 out of 27k point-like

24 November 2021

eFEDS - eROSITA

Bulbul+21

Clusters in disguise

Bulbul+21

X-ray luminosity function

Milan

24 November 2021

eFEDS - eROSITA

eFEDS – XXL comparison

eFEDS – Superclusters

• 19 superclusters Y. Özsoy

First Supercluster

Mass Calibration

35 / 52

Chiu+21

eFEDS - L - T relation

36 / 52

24 November 2021

Bahar+21

eFEDS – scaling relation comparison

Morphological parameters

• Concentration $c_{SB} = \frac{S_{B}(<0.1R_{500})}{S_{B}(<B_{500})}$

Santos+08

- how significant is the core emission
- at [40 − 400] kpc and [0.1 − 1] R₅₀₀
- Cuspiness $\alpha = \frac{d \log \rho_g}{d \log r} \Big|_{0.04R_{500}}$ Vikhlinin+07
 - steepness of the density profile at fixed rescaled radius
- Central Density $n_0 = n_e |_{0.02R_{500}}$

Hudson+10

- Value of the density at fixed rescaled radius
- Ellipticity ε
 - ratio between minor and major axis of the distribution

Centroid Shift

$$w = \frac{1}{R_{500}} \left[\frac{1}{N-1} \sum_{i=1}^{N} (\Delta_i - \bar{\Delta})^2 \right]^{\frac{1}{2}}$$

Mohr+93

- variance of the centroid of the emission in increasing apertures
- Power ratios Pm0

Buote+95

- 2-dimensional decomposition of the surface brightness
- Photon asymmetry A_{nhot}

Nurgaliev+13

- difference between measured photon distribution and uniform distribution
- Gini coefficient G

Loetz+04

eROSIT

38 / 52

 inequality in distribution of photons among the pixels

Disturbed vs Relaxed Clusters

Parameter-parameter distribution

L-z dependence of parameters

Milan

Joint Modeling of the Redshift and Luminosity Evolution

•
$$\mathcal{M}_{new} = \mathcal{M} \cdot \left(\frac{L}{L_{\text{piv}}}\right)^{-\gamma} \left(\frac{E(z)}{E(z_{\text{piv}})}\right)^{-\beta}$$

L and z Independent Morphological Parameters

The new relaxation score: $R_{\text{score}} = \int_{-\infty}^{\mathcal{M}_1} \dots \int_{-\infty}^{\mathcal{M}_n} \mathcal{MN}(\mu, \Sigma) d\mathcal{M}_1 \dots d\mathcal{M}_n$

Corrected parameter-parameter distribution

Relaxed cluster fraction

Relaxed fraction evolution

Investigating the bimodality

$$P(\hat{\mathcal{M}}|\theta, \mathcal{D}) = \int P(\hat{\mathcal{M}}|\mathcal{M}) \cdot \mathcal{D}(\mathcal{M}|\theta) d\mathcal{M}$$

Parameter	ΔB_N	ΔB_{2N}	ΔB_{SN}	ΔB_{LN}	ΔB_{2LN}	ΔB_{SLN}
n_0	36.00	5.84	6.47	2.25	3.69	0.00
$c_{SB,\ R_{500}}$	40.83	1.28	7.41	0.00	0.59	0.75
$c_{SB,40-400kpc}$	58.91	7.69	16.06	5.45	2.77	0.00
W	80.18	8.28	22.12	7.38	2.41	0.00
α	1.71	2.63	0.81	0.00	2.63	0.72
	2.99	0.54	0.00	3.53	0.52	0.29
P_{10}	48.81	7.70	14.58	0.00	1.51	1.26
P_{20}	12.55	2.42	0.00	1.99	0.34	2.11
P_{30}	14.36	4.84	1.95	7.28	0.00	6.26
P_{40}	7.58	5.83	0.00	7.91	1.71	4.27
G	0.00	1.30	0.87	0.19	1.43	0.99
A_{phot}	49.30	2.79	16.28	3.88	0.00	2.62
R_{score}	176.68	22.14	113.24	0.00	2.17	0.47

• Our data prefer single-peak distribution over a bi-modal

Milan

24 November 2021

Summary

- In eFEDS we detect >4 clusters per deg^2 , as expected
- $M > 10^{13} M_{\odot}, z < 1.3$
- Check out https://erosita.mpe.mpg.de/publications/

• Contact our working groups

 $https://www.mpe.mpg.de/455860/working_groups$

• Get the Cal-PV data

https://erosita.mpe.mpg.de/

Backup slides

eRASS1

eRASS1

eFEDS-eROSITA 5

eRASS1 Cluster Mass Calibration

- Optical Data through richness vs. mass scaling relations
- X-ray observations through hydrostatic eql. assumption
- Weak Lensing (DES, KIDS, and HSC)

Credit: F. Pacaud