

Knocking on giant's doors:

The evolution of the dust-to-stellar mass ratio in distant galaxies

Darko Donevski, SISSA, Trieste

Collaborators:

A. Lapi, L. Pantoni (SISSA, Trieste) R. Davé, K. Kraljic (ROE, Edinburgh) D. Narayanan, Q. Li (Uni. Florida) K. Malek, W. Pearson (NCBJ, Warsaw) D. Liu (MPIA, Heidelberg) C. Gomez-Guijarro (CEA, Saclay, Paris) A. Man (Dunlap, Uni. Of Toronto) A. Feltre (INAF, Bologna) S. Fujimoto (DAWN, Copenhagen) I. Damjanov (SMU, Halifax) 1. Introduction:

Importance of studying the dust-to-stellar mass ratio in dusty star-forming galaxies (DSFGs)

- 2. The observed evolution of the dust-to-stellar mass ratio (Insight from ALMA observations)
- 3. The modelled evolution of the dust-to-stellar mass ratio in simulations

(The observed evolution withing the cosmological framework)

Summary and future prospects

How do we know about hidden "giants" in the Universe ?

Credit: HELP collaboration

Herschel (far-IR) observed more than 1000 sq.degrees of the sky + in COSMOS field only there are ~1000 galaxies detected with ALMA

1. Introduction

What did we learn from existing studies of DSFGs?

What did we learn from existing studies of DSFGs?

- The highest star-formation rate in the Universe (SFR > 500-2000 M☉/yr)
- Most extreme tail of the galaxy stellar and dust mass function ($M_{\star} > 10^{10} M_{\odot}$, Bethermin+ 2017)
- DSFGs confirmed even at $z \sim 7$ (Harikane+ 2019, Strandet+ 2017, Riechers+ 2013) and show tight connection to overdensities (e.g. Miller+ 2018, Harikane+ 2019)

What did we learn from existing studies of DSFGs?

- The highest star-formation rate in the Universe (SFR > 500-2000 M☉/yr)
- Most extreme tail of the galaxy stellar and dust mass function ($M_{\star} > 10^{10} M_{\odot}$, Bethermin+ 2017)
- DSFGs confirmed even at $z \sim 7$ (Harikane+ 2019, Strandet+ 2017, Riechers+ 2013) and show tight connection to overdensities (e.g. Miller+ 2018, Harikane+ 2019)

DSFGs - importance for galaxy formation & evolution

- The growth and evolution of early massive structures !
- Conditions for extreme star-formation and dust production in the distant Universe !

DSFGs - importance for galaxy formation & evolution

Importance of dust modelling within the galaxy evolution framework

1. Introduction

11

1. Introduction

1.2 Inferring physical properties of dusty galaxies

Studying the evolution of ISM through observed SEDs of dusty galaxies!

(e.g. Elbaz+ '11, Rodighiero+ '11, Speagle+ '14, Whitaker+ '15, Schreiber+ '15, Pearson+ '18)

Investigating the conditions for star-formation in diverse SF populations ! (e.g. MS and SB DSFGs)

Theoretical challenge

(Semi-)Analitic Models (SAMs)	Cosmological simulations	Phenomenological models
DURHAM (Lacey+ '10, Lacey+ '16) L-GALAXIES (Vijayan+ '19) G.A.S (Causin+ '19) Popping+ '17 SHARK (Lagos+ '19) Pantoni+ '19	Shimizu+ '12 Illustris (McKinnon+ '17) Dusty-Gadget (Graziani+ '19) SIMBA (Davé+ '19, Li+ '19)	Schreiber+ '16 Casey '18 Bethermin+ '17

(+) Simultaneously explain the redshift distribution & SMF
 (-) Disagree about merger contribution, metallicity, IMF, dust mass function etc.

Main questions & challenges addressed in our work:

- How the dust-to-stellar mass ratio evolves with cosmic time, and position of the galaxy with respect to the main-sequence in disty star-forming galaxies (DSFGs) ?
- How the cosmic evolution of the dust-to-stellar mass ratio can be understood within the framework of galaxy formation?

 Theoretical

Challenges:

- Limited depth/beamsize of FIR surveys
- Lack of exquisite OPT+nearIR+dust SEDs
- Accounting for the AGN-contribution to estimated dust luminosity
- Dust life cycle modelled in a self-consistant way

Main questions & challenges addressed in our work:

- How the dust-to-stellar mass ratio evolves with cosmic time, and position of the galaxy with respect to the main-sequence in disty star-forming galaxies (DSFGs) ?
- How the cosmic evolution of the dust-to-stellar mass ratio can be understood within the framework of galaxy formation?

 Theoretical

• Dust-to-stellar mass ratio as a function of z, sSFR, Mstar & dust size for >300 ALMA galaxies with full SED.

(1) Donevski et al., A&A 644, A144 (2020); arXiv:2008.09995

(2) Donevski et al., to be submitted

II Cosmic evolution of dust-to-stellar mass ratio in DSFGs

Donevski et al., A&A 644, A144 (2020) arXiv:2008.09995

2.1 Data selection and SED modelling workflow

(Donevski+ '20)

Observed wavelength $[\mu m]$

20

2.1 Data analysis/SED modelling workflow

Evolution with redshift

Message 2: The cosmic evolution

- MS vs SB separation based on Speagle+ 14
- Growth of dust-to-stellar mass ratio peaks @ z~2 and is different for MS and SB galaxies (in line with Tan+'14, Bethermin+'15)
- ➡ Great diagnostics to pre-select MS and SB DSFGs @1<z<5 !
- Different ISM conditions in distant massive galaxies

Dust production vs. dust destruction

PROBLEM 1: SNe need to be maximaly efficient, with no destruction in order to explain observed dust masses in DSFGs (Gall+ '18)

• Top-heavy IMF cannot produce high enough Mdust (McKinnon+ '18, ILLUSTRIS)

• Dust growth is plausible solution, but galaxies need to be metal rich!

2.3 The cosmic evolution of the dust-to-stellar mass ratio: empirical modelling M-Z relations: Gas scaling relation from Genzel+15 [MS] Liu+ '19 ···· Hunt+16 [MS] Cosmic evolution of the dust-to-stellar mass 10^{-1} BMR [MS] Hunt+16 [SB] ratio: $\frac{M_{\rm dust}}{M_{\star}}(z) \propto \frac{M_{\rm gas}}{M_{\star}}(z) \times Z_{\rm gas}(z)$ Genzel+15 [SB] Tan+'14 [SB] ${ m M}_{ m dust}/{ m M}_{\star}$ 10-2 10^{-3} Redshift

Average (modelled) Zgas: <u>12+log(O/H)=8.63</u> (for MS) & <u>12+log(O/H)=8.5</u> (for SB);

Conditions for dominant grain growth in ISM (e.g. Triani+ '20): $12 + \log(O/H) > 8.49 \& M_{gas} > 10^{10} [M_{\odot}]$

Fullfilled in ~80% of our ALMA galaxies!

2. Observed evolution

• Slowly evolving MZR + gas-scaling relations by Liu + '19 and Tacconi + '18 supports the data.

2.3 The cosmic evolution of the dust-to-stellar mass ratio: empirical modelling

2.3 The cosmic evolution of the dust-to-stellar mass ratio: empirical modelling

III Evolution of the dust-to-stellar mass ratio in galaxy models

Can the observed evolution be understood within the dusty galaxy formation framework ?

3. Dusty galaxy formation models

(Semi-)Analitic Models (SAMs)	Cosmological simulations	Phenomenological models
DURHAM (Lacey+ '10, Lacey+ '16) L-GALAXIES (Vijayan+ '19) G.A.S (Causin+ '19) Popping+ '17 SHARK (Lagos+ '19) Pantoni+ '19	Shimizu+ '12 Illustris (McKinnon+ '17) Dusty-Gadget (Graziani+ '19) SIMBA (Davé+ '19, Li+ '19)	Schreiber+ '16 Casey '18 Bethermin+ '17

Interpreting the observed trends with models that include self-consistent dust life cycle of DSFGs.

 $\Sigma \dot{M}_{\rm dust} \propto \dot{M}_{\rm dust}^{\rm SNe} + \dot{M}_{\rm dust}^{\rm ISM} - \dot{M}_{\rm dust}^{\rm destr} - \dot{M}_{\rm dust}^{\rm SF} + \dot{M}_{\rm dust}^{\rm inf} - \dot{M}_{\rm dust}^{\rm out}$

Successes:

(1) Cosmological simulation broadly consistant with MS DSFGs.

(2) Smooth evolution towards high-z in all models.

Evolution with redshift 10⁻¹ P19 [SB] SIMBA [SB] B17 [SB] This work[MS] This work[SB] ${
m M}_{
m dust}/{
m M}_{\star}$ 10⁻² 10⁻³ 5 1 2 3 4 Redshift

Successes:

(1) Cosmological simulation broadly consistant with MS DSFGs.

(2) Smooth evolution towards high-z in all models.

• Problem: Cosmological simulation cannot fully capture dust in SB DSFGs

Relative missmatch for SB DSFGs:

- SIMBA seem to produce less metals (~2x below solar) relative to data in massive SB DSFGs with fgas>0.
- Metal production less rapid than in analytic solutions (e.g. Pantoni+ '19) (predicted timescale for which Zgas in cold ISM attains $Z_{\odot}/10$ is t<10 Myr).

⇒ Smaller Zgas —> longer accretion timescale ⇒ Our data suggest $\tau_{acc,0} < 10^6 yr$ $\tau_{acc} = \tau_{acc,0} × a^{-1} × n_{H}^{-1} × T_{gas}^{-1/2} × Z_{gas}^{-1}$

Relative missmatch for SB DSFGs:

 SIMBA seem to produce less metals (~2.5x below solar) relative to data in massive SB DSFGs with high f_gas (Mstar>10^10 Msol, f_gas>0.6)

➡ Our data indicate longer (~ Gyr) destraction timescales!

$$au_{\rm dust} = rac{ au_{\rm SN}M_{\rm ISM}}{M_g} = rac{\Sigma_{\rm ISM}}{\mathcal{R}_{\rm SN}M_g}$$

⇒ For example: High ISM gas masses and metallicities in DSFGs ($M_{gas} > 10^{10} M_{\odot}, Z_{gas} \sim 0.8 - 0.9 Z_{\odot}$) gives destruction timescales of ~ 1.1 Gyr for MS and 0.5 Gyr for SB galaxies! This is 2x longer than for very local systems with smaller gas density (Jones+ '11, Slavin+ '15, Aoyama+ '19).

Survival grain capacity different at high-z ? (e.g Dwek+ '14)

or: OBSERVATIONAL EFFECTS, i.e. Opacity effects affect the data (optically thick emission in SB —> higher Td —> smaller Md) ?

3.2 The role of compactness

- (1) Donevski et al., A&A accepted ; arXiv:2008.09995
- (2) Donevski et al., to be submitted

3.3 The role of environments

• Connection between overdensities and compact DSFGs with enhenced dust mass

(Donevski et al., to be submitted)

 Rapid dust growth linked to most massive DM halos (candidate protoclusters at z>3)

Remarks

- •The dust-to-stellar mass ratio evolves with *z*, sSFR, integrated dust size, but differently in MS DSFGs & SB DSFGs.
- Great diagnostic tool to separate the MS DSFGs & SB DSFGs, and unveil their evolutionary phases.
- <u>Our study first to provide strong evidence that large reservoirs of metal rich gas and</u> <u>rapid dust growth in ISM are common in many high-z DSFGs</u> $(M_{dust} = 8 \times 10^8 M_{\odot}, M_{gas} \approx 10^{11} M_{\odot}, 12 + \log(0 H) = 8.52).$
- Phenomenological and analytical models broadly agree with observations.
- <u>SIMBA is able to reproduce MS DSFGs</u> (first such success for ALMA galaxies!)
 Less succesfull in most extreme <u>SB DSFGs</u> (e.g. longer accretion timescales due to lower Zgas and/or overefficient AGN feedback ?).
- Some of our <u>DSFGs have very high compact IR sizes</u> —> high ΣLIR —> need to understand which process drives enhanced dust-to-stellar mass ratio in such compact <u>SB DSFGs</u> !

Darko Donevski, SISSA, Trieste, Italy

email: $\underline{darko.donevski@sissa.it}$

Remarks

• Future facilities

Future James Webb Space Telescope (JWST) data combined with larger ALMA samples + wide surveys (i.e. Euclid and NIKA2):

- More accurate <u>AGN contribution</u> to DSFGs
- Constraints on the <u>Zgas</u> from various lines (mid-IR lines up to $z\sim3$, optical up to $z\sim8$)
- <u>Environmental dependence</u> of dust life cycle.

Darko Donevski, SISSA, Trieste, Italy

email: <u>darko.donevski@sissa.it</u>

Remarks

40

Questions, comments...

Email: darko.donevski@sissa.it

@darkOenergy

Remarks

James Webb Space Telescope

Remarks

JWST-ALMA synergy

AGN characterisation			
ALMA	JWST		
XDR tracers (HCN, HCO+)	Hot dust, broad lines (Pa-alpha)		
Obscured star formation			
ALMA	JWST		
Cold dust Molecular gas	PAH emission mid-IR lines		
Kinematics			
ALMA	JWST		
Cold molecular gas	lonized gas Warm molecular gas		