The base of the multi-phase Galactic outflow

European Research Council

Gabriele Ponti INAF OA Brera - MPE

How do galaxies evolve?

The Baryon cycle

The Baryon cycle

Tumlinson +17

10⁶⁻⁷ K

300 kpc

The Baryon cycle

Tumlinson +17

10⁶⁻⁷ K

300 kpc

Hot Baryons: Bulk of Baryons Re-condensation Driver outflows

AGN and Starbursts influence CGM

MS 0735.6+7421: Chandra/Hubble/VLA

Starburst

M 82: Hubble/Spitzer/Chandra

→ Understand feedback between nucleus and CGM

AGN and Starbursts influence CGM

AGN

MS 0735.6+7421: Chandra/Hubble/VLA

Starburst

M 82: Hubble/Spitzer/Chandra

Understand feedback between nucleus and CGM

Do normal galaxies influence their CGM?

M83: Subaru/ESO/Hubble

Do normal galaxies influence their CGM?

Does the nuclear activity of quiescent galaxies influence their CGM?

Do normal galaxies influence their CGM?

Let's look to the Milky Way

Does the nuclear activity of quiescent galaxies influence their CGM?

M83: Subaru/ESO/Hubble

From Spitzer/GLIMPSE data Churchwell +09

Galactic bar mass Mass ~ 7×10⁹ M_{Sun} Size ~ 3 kpc

60°

90°

75,000 ly

60,000 |

45,000

Arm

enseus Arm

Outer Ann

120°

SCI

Norma Ann

0

taurus

Arm

From Spitzer/GLIMPSE data Churchwell +09

Sun

on Spur

15,000 ly

Galactic bar mass Mass ~ 7×10⁹ Msun Size ~ 3 kpc

60°

90°

75,000 ly

60,000 |

45.000

Seo train

enseus Arm

Outer Ann

120°

Scu

Norma Ann

0

taurus

Arm

From Spitzer/GLIMPSE data Churchwell +09

🖸 Sun

Orion Spur

15,000 ly

Galactic bar mass Mass ~ 7×10⁹ Msun Size ~ 3 kpc

60°

90°

75,000 ly

60,000

45,000.

Arm

Solution

enseus Arm

Outen Ann

120°

Scutu

Norma Ann

0

taurus

Arm

From Spitzer/GLIMPSE data Churchwell +09

🖸 Sun

Orion Spur

15,000 ly

Galactic bar mass Mass ~ 7×10⁹ Msun Size ~ 3 kpc

60°

90°

75,000 ly

60,000

45,000

Arm

Seo stal

enseus Arm

Outen Ann

120°

Scutu

Norma Arm

0

Laurus

Arm

From Spitzer/GLIMPSE data Churchwell +09

🖸 Sun

Orion Spur

15,000 ly

The central degrees of the Milky Way

The central degrees of the Milky Way

Molinari+11

Galactic longitude

The central degrees of the Milky Way

Central Molecular Zone Herschel column density map

140 pc

1 deg

Sgr A*

359.600

359.400

Molinari+11

Abundant gas reservoir ~3×10⁷ M_{Sun} Peculiar environment: forming stars at extremely low rate (10 times lower than expected)

359.800

Nevertheless -> Mini starburst

0.000

Galactic longitude

ESA News/XMM-Newton/G. Ponti+15

X-ray binaries

ESA News/XMM-Newton/G. Ponti+15

X-ray binaries

ESA News/XMM-Newton/G. Ponti+15

→ Sgr A* → No AGN!

140 pc 1 deg

X-ray binaries

Can activity at the GC influence our CGM?

ESA News/XMM-Newton/G. Ponti+15

→ SgrA* → No AGN!

140 pc

1 deg

Sgr A* current emission

Sgr A* current emission

Sgr A* monitoring

Sgr A* current emission

Sgr A* monitoring

+15; +18; +19; Brinkerink +15; Liu +16; Stone +16; Witzel +18; Lu +18; von Fellenberg 18; Fazio +18; Iwata +20 ; Gravity Coll. +20

Reflection of a past bright flash

Fe K α flux [ph cm⁻² s⁻¹ pixel⁻¹]

3.5e-08

See also Ponti+10;+13;+14; Clavel+13;+14; Yusef-Zadeh+13a,b;+19; Marin+14; Koyama+14;+18; Zhang+15; Mori+15; Nobukawa+15; +16; Walls+16; Krivonos+14;+17; Churazov+17a,b,c; Chuard+18; Chernyshov+18; Kuznetsova+19; Di Gesu+20; Khabibullin+20a,b

Reflection of a past bright flash

Fe K α flux [ph cm⁻² s⁻¹ pixel⁻¹]

All bright Fe K α clumps are variable \rightarrow Reflection by bright flash in the center

See also Ponti+10;+13;+14; Clavel+13;+14; Yusef-Zadeh+13a,b;+19; Marin+14; Koyama+14;+18; Zhang+15; Mori+15; Nobukawa+15; +16; Walls+16; Krivonos+14;+17; Churazov+17a,b,c; Chuard+18; Chernyshov+18; Kuznetsova+19; Di Gesu+20; Khabibullin+20a,b

Sgr A*'s past activity

Sgr A* monitoring

Sgr A*'s past activity

Sgr A* monitoring

Sgr A*'s past activity

Can we go further back in time?

Sgr A* monitoring

Si xiii, S xv, Ar xvii

140 pc

1 deg

Bipolar lobes centred on Sgr A*

Patchy distribution with small and large structures Total luminosity of soft plasma: L_X ~ 3.4×10³⁶ erg s⁻¹

Si xiii, S xv, Ar xvii

140 pc

1 deg

Bipolar lobes centred on Sgr A*

G359.77-0.09

Patchy distribution with small and large structures Total luminosity of soft plasma: L_X ~ 3.4×10³⁶ erg s⁻¹

Si xiii, S xv, Ar xvii

Atlas of all (~15) SNR in the region

140 pc

1 deg

Ponti +15

Name	Other name	Coordinates	Size	Reference
		(l, b)	arcsec	
STAR CLUSTERS:				
Central star cluster		359.9442, -0.046	0.33	45,116,117
Quintuplet		0.1604, -0.0591	0.5	1,63,1
Arches	G0.12+0.02	0.1217, 0.0188	0.7	1,2,3,4,5,6,7,8,9
Sh2-10	DB00-6	0.3072,-0.2000	1.92	10,11,12,6
Sh2-17	DB00-58	0.0013, 0.1588	1.65	13,63,1
DB00-05	G0.33-0.18	0.31 -0.19	0.4	22,63,1
SNR - BUBBLES - S	SUPER-BUBBLES:			
G359.0-0.9	G358.5-0.9 - G359.1-0.9	359.03,-0.96	26×20	X-R 48,51,75,76.
G359.07-0.02	G359.0-0.0	359.07,-0.02	22×10	R 14,48,5
	G359.12-0.05	359.12,-0.05	24×16	X 66
G359.10-0.5		359.10,-0.51	22×22	X-R 37,48,51,56,74
G359.41-0.12		359.41,-0.12	3.5×5.0	X 14
Chimney		359.46,+0.04	6.8×2.3	X 14
G359.73-0.35‡		359.73,-0.35	4	X 58
G359.77-0.09	Superbubble	359.84,-0.14	20×16	X 15,16,1
	G359.79-026b	359.79,-0.26	8×5.2	X 15,16,1
	G0.0-0.16††	0.00,-0.16		X This w
G359.87+0.44	Cane C350 85 10 30	359.87,+0.44	11×5	R 48
20ma Can A * 'a lahaa	0339.83+0.39	250.04 0.04	E 00	D 22 22 2
20pc Sgr A = s 100es	Parashuta C250.02.0.07	359.94, -0.04	0.00	K 32,33,3 D 25 29 42 47
G339.92-0.091	Parachute - G359.93-0.07	359.93,-0.09		K 55,58,45,47,
Sgr A East		359.963, -0.053	3.2×2.5	X-K 5,18,19,20
60.1-0.1		0.109,-0.108	13.0 X 11	X Inis w
CO 001 0 000	G0.13,-0.12b	0.13,-0.12	3 × 3	X 1/
30.224-0.032	G0.2.0.0	0.224,-0.032	2.3×4.6	X This w
30.30+0.04	G0.3+0.0	0.34,+0.045	14×8.8	R 21,48,51.
	G0.34+0.05			
	G0.33+0.04	0.40.00 0		
G0.40-0.02	Suzaku J1746.4-2835.4 G0.42-0.04	0.40,-0.02	4.7 X 7.4	X 22
G0.52-0.046		0.519,-0.046◊	2.4×5.1	This wo
G0.57-0.001		0.57,-0.001	1.5×2.9	This wo
G0.57-0.018†	CXO J174702.6-282733	0.570,-0.018	0.2	X 23,24,58,5
G0.61+0.01†	Suzaku J1747.0-2824.5	0.61,+0.01	2.2×4.8	X 22,65
G0.9+01♡	SNR 0.9+0.1	0.867,+0.073	7.6×7.2	R 25,26,27,28,29
DS1	G1.2-0.0	1.17,+0.00	3.4×6.9	X 31
Sgr D SNR	G1.02-0.18	1.02,-0.17	10×8.0	R 30,31,48,51,7
sen - s age agy ann ann Ainn aite ailde A	G1.05-0.15	Constraint of the State of the		
	G1.05-0.1			
	G1.0-0.1			
G1.4-0.1		1.40.10	10×10	R 73.81

Ponti +15

G1.4-0.1

1.4,-0.10

Si xiii, S xv, Ar xvii

Atlas of all (~15) SNR in the region $3.5 \times 10^{-4} \text{ yr}^{-1} < \text{SN rate} < 15 \times 10^{-4} \text{ yr}^{-1}$

140 pc

1 deg

Ponti +15

Name	Other name	Coordinates (1, b)	Size arcsec	Reference
STAR CLUSTERS:				
Central star cluster		359.9442, -0.046	0.33	45,116,117
Ouintuplet		0.1604, -0.0591	0.5	1,63,1
Arches	G0.12+0.02	0.1217, 0.0188	0.7	1,2,3,4,5,6,7,8,9
Sh2-10	DB00-6	0.3072,-0.2000	1.92	10,11,12,6
Sh2-17	DB00-58	0.0013, 0.1588	1.65	13,63,1
DB00-05	G0.33-0.18	0.31 -0.19	0.4	22,63,1
SNR - BUBBLES - SU	JPER-BUBBLES:			
G359.0-0.9	G358.5-0.9 - G359.1-0.9	359.03,-0.96	26×20	X-R 48,51,75,76
G359.07-0.02	G359.0-0.0	359.07,-0.02	22×10	R 14,48,5
	G359.12-0.05	359.12,-0.05	24×16	X 66
G359.10-0.5		359.10,-0.51	22×22	X-R 37,48,51,56,74
G359.41-0.12		359.41,-0.12	3.5×5.0	X 14
Chimney		359.46,+0.04	6.8×2.3	X 14
G359.73-0.35‡		359.73,-0.35	4	X 58
G359.77-0.09	Superbubble	359.84,-0.14	20×16	X 15,16,1
	G359.79-026b	359.79,-0.26	8×5.2	X 15,16,1
	G0.0-0.16††	0.00,-0.16		X This w
G359.87+0.44	Cane G359.85+0.39	359.87,+0.44	11×5	R 48
20pc Sgr A*'s lobes		359.94, -0.04	5.88	R 32.33.3
G359.92-0.09±	Parachute - G359.93-0.07	359.930.09	1	R 35,38,43,47
Sgr A East	G0.0+0.0	359.963, -0.053	3.2×2.5	X-R 5.18,19,20
G0.1-0.1	Arc Bubble	0.109,-0.108	13.6×11	X This w
	G0.130.12b	0.130.12	3×3	X 17
G0.224-0.032		0.224,-0.032	2.3×4.6	X This w
G0.30+0.04	G0.3+0.0	0.34,+0.045	14×8.8	R 21,48,51
	G0.34+0.05			
	G0.33+0.04			
G0.40-0.02	Suzaku J1746.4-2835.4 G0.42-0.04	0.40,-0.02	4.7×7.4	X 22
G0.52-0.046		0.5190.046	2.4×5.1	This wo
G0.57-0.001		0.570.001	1.5×2.9	This wo
G0.57-0.018†	CXO J174702.6-282733	0.5700.018	0.2	X 23.24.58.5
G0.61+0.01†	Suzaku J1747.0-2824.5	0.61.+0.01	2.2×4.8	X 22.65
G0.9+01♡	SNR 0.9+0.1	0.867.+0.073	7.6×7.2	R 25.26.27.28.29
DS1	G1.2-0.0	1.17.+0.00	3.4×6.9	X 31
Sgr D SNR	G1.02-0.18	1.02,-0.17	10×8.0	R 30,31,48,51.7
	G1.05-0.15	anana-at tabihit	1978-1973 - 1973 - 1973-1973 197	······································
	G1.05-0.1			
	G1.0-0.1			
G1.4-0.1		1.40.10	10×10	R 73.81

ATLAS OF DIFFUSE X-DAV EMITTING FEATURES

Ponti +15

G1.4-0.1

1.4,-0.10

Si xiii, S xv, Ar xvii

Atlas of all (~15) SNR in the region $3.5 \times 10^{-4} \text{ yr}^{-1} < \text{SN rate} < 15 \times 10^{-4} \text{ yr}^{-1}$ Massive kinetic energy input > 1.1×10⁴⁰ erg s⁻¹

140 pc

1 deg

Name	Other name	Coordinates (1, b)	Size arcsec	Reference
STAR CLUSTERS	:			
Central star cluster		359.9442, -0.046	0.33	45,116,117
Quintuplet		0.1604, -0.0591	0.5	1,63,1
Arches	G0.12+0.02	0.1217, 0.0188	0.7	1,2,3,4,5,6,7,8,9
Sh2-10	DB00-6	0.3072,-0.2000	1.92	10,11,12,6
Sh2-17	DB00-58	0.0013, 0.1588	1.65	13,63,1
DB00-05	G0.33-0.18	0.31 -0.19	0.4	22,63,1
SNR - BUBBLES -	SUPER-BUBBLES:			
G359.0-0.9	G358.5-0.9 - G359.1-0.9	359.03,-0.96	26×20	X-R 48,51,75,76,
G359.07-0.02	G359.0-0.0	359.07,-0.02	22×10	R 14,48,5
	G359.12-0.05	359.12,-0.05	24×16	X 66
G359.10-0.5		359.10,-0.51	22×22	X-R 37,48,51,56,74,
G359.41-0.12		359.41,-0.12	3.5×5.0	X 14
Chimney		359.46,+0.04	6.8×2.3	X 14
G359.73-0.35‡		359.73,-0.35	4	X 58
G359.77-0.09	Superbubble	359.84,-0.14	20×16	X 15,16,1
	G359.79-026b	359.79,-0.26	8×5.2	X 15,16,1
	G0.0-0.16††	0.00,-0.16		X This w
G359.87+0.44	Cane G359.85+0.39	359.87,+0.44	11×5	R 48
20pc Sgr A*'s lobes	8	359.94, -0.04	5.88	R 32,33,34
G359.92-0.09‡	Parachute - G359.93-0.07	359.93,-0.09	1	R 35,38,43,47
Sgr A East	G0.0+0.0	359.963, -0.053	3.2×2.5	X-R 5,18,19,20
G0.1-0.1	Arc Bubble	0.109,-0.108	13.6×11	X This w
	G0.13,-0.12b	0.13,-0.12	3×3	X 17
G0.224-0.032		0.224,-0.032	2.3×4.6	X This w
G0.30+0.04	G0.3+0.0	0.34,+0.045	14×8.8	R 21,48,51.
	G0.34+0.05			
	G0.33+0.04			
G0.40-0.02	Suzaku J1746.4-2835.4 G0.42-0.04	0.40,-0.02	4.7×7.4	X 22
G0.52-0.046		0.519,-0.046	2.4×5.1	This wo
G0.57-0.001		0.570.001	1.5×2.9	This wo
G0.57-0.018†	CXO J174702.6-282733	0.5700.018	0.2	X 23,24,58,5
G0.61+0.01†	Suzaku J1747.0-2824.5	0.61,+0.01	2.2×4.8	X 22,65.
G0.9+01♡	SNR 0.9+0.1	0.867.+0.073	7.6×7.2	R 25.26.27.28.29
DS1	G1.2-0.0	1.17.+0.00	3.4×6.9	X 31
Sgr D SNR	G1.02-0.18	1.020.17	10×8.0	R 30.31.48.51.7
	G1.05-0.15			,,,.,
	G1.05-0.1			
	G1.0-0.1			
G1.4-0.1	ಂಡುವಾದ್ರಿಕ್ಷೇಂ ಹೊಗೆಗಳು	1.40.10	10×10	R 73.81

Ponti +15

G1.4-0.1

1.4,-0.10

Si xiii, S xv, Ar xvii

Atlas of all (~15) SNR in the region $3.5 \times 10^{-4} \text{ yr}^{-1} < \text{SN rate} < 15 \times 10^{-4} \text{ yr}^{-1}$ Massive kinetic energy input > 1.1×10⁴⁰ erg s⁻¹

Powering outflows to Galactic center lobe?

Law +11; Crocker +11; 12; Yoast-Hull +14; Jouvin +15

140 pc

1 deg

Ponti +15

Name	Other name	Coordinates (1, b)	Size arcsec	Reference
STAR CLUSTERS:				
Central star cluster		359.9442, -0.046	0.33	45,116,117
Quintuplet		0.1604, -0.0591	0.5	1,63,11
Arches	G0.12+0.02	0.1217, 0.0188	0.7	1,2,3,4,5,6,7,8,9
Sh2-10	DB00-6	0.3072,-0.2000	1.92	10,11,12,6
Sh2-17	DB00-58	0.0013, 0.1588	1.65	13,63,1
DB00-05	G0.33-0.18	0.31 -0.19	0.4	22,63,1
SNR - BUBBLES - S	SUPER-BUBBLES:			
G359.0-0.9	G358.5-0.9 - G359.1-0.9	359.03,-0.96	26×20	X-R 48,51,75,76,
G359.07-0.02	G359.0-0.0	359.07,-0.02	22×10	R 14,48,5
	G359.12-0.05	359.12,-0.05	24×16	X 66
G359.10-0.5		359.10,-0.51	22×22	X-R 37,48,51,56,74,
G359.41-0.12		359.41,-0.12	3.5×5.0	X 14
Chimney		359.46,+0.04	6.8×2.3	X 14
G359.73-0.35‡		359.73,-0.35	4	X 58
G359.77-0.09	Superbubble	359.84,-0.14	20×16	X 15,16,1
	G359.79-026b	359.79,-0.26	8×5.2	X 15,16,1
	G0.0-0.16††	0.00,-0.16		X This w
G359.87+0.44	Cane G359.85+0.39	359.87,+0.44	11×5	R 48
20pc Sgr A*'s lobes		359.94, -0.04	5.88	R 32,33,34
G359.92-0.09±	Parachute - G359.93-0.07	359.93,-0.09	1	R 35,38,43,47.
Sgr A East	G0.0+0.0	359.963, -0.053	3.2×2.5	X-R 5,18,19,20
G0.1-0.1	Arc Bubble	0.109,-0.108	13.6×11	X This w
	G0.13,-0.12b	0.13,-0.12	3×3	X 17
G0.224-0.032		0.224,-0.032	2.3×4.6	X This w
G0.30+0.04	G0.3+0.0	0.34,+0.045	14×8.8	R 21,48,51,
	G0.34+0.05			
	G0.33+0.04			
G0.40-0.02	Suzaku J1746.4-2835.4 G0.42-0.04	0.40,-0.02	4.7×7.4	X 22
G0.52-0.046		0.519,-0.046	2.4×5.1	This wo
G0.57-0.001		0.570.001	1.5×2.9	This wo
G0.57-0.018†	CXO J174702.6-282733	0.570,-0.018	0.2	X 23,24,58,59
G0.61+0.01†	Suzaku J1747.0-2824.5	0.61,+0.01	2.2×4.8	X 22,65,
G0.9+01♡	SNR 0.9+0.1	0.867,+0.073	7.6×7.2	R 25.26.27.28.29
DS1	G1.2-0.0	1.17,+0.00	3.4×6.9	X 31
Sgr D SNR	G1.02-0.18	1.02,-0.17	10×8.0	R 30,31,48,51.7
are so nnyou ar in 1979 (1920)	G1.05-0.15	202412492047 78-0494024825		
	G1.05-0.1			
	G1.0-0.1			
G1 4-0 1		1 4 -0 10	10×10	R 73.81

ATI AS OF DIFFUSE Y DAV EMITTING FEATURES

Ponti +15

G1.4-0.1

1.4,-0.10

Discovery of high latitude hot plasma

Discovery of high latitude hot plasma

What is this?

Galactic center radio lobe

What is the origin of this hot plasma?

What is the origin of this hot plasma? Hot atmosphere of the Galactic center? Ponti +15 1.000 359.50 Galactic Innotude 0.44 0.32 0.23 0.26

What is the origin of this hot plasma? Hot atmosphere of the Galactic center?

ESA News/XMM-Newton/G. Ponti 2019, Nature

Base of gamma-ray bubble.

2.35-2.56 S xv 2.7-3.0 keV

Galactic plane .

Northern chimney

~160 light years

Sagittarius A*

ESA News/XMM-Newton/G. Ponti 2019, Nature

Base of gamma-ray bubble.

2.35-2.56 S xv 2.7-3.0 keV

Galactic plane

Flow molecular matter

Hot outflow Northern chimney

~160 light years

Sagittarius A*

The Galactic center Chimneys

The Galactic center Chimneys

The Galactic center Chimneys

Ponti +2019, Nature

The Galactic center Chimneys

Ponti +2019, Nature

Galactic longitude

Latitudinal distance in pc from Sgr A*

Galactic longitude

Latitudinal distance in pc from Sgr A*

Outflow has radio counterpart

Hot plasma (X-rays) warm dust (mid-IR) \rightarrow shocks (radio)

Coherent features on > 10^2 pc scales

→ Deeply interconnected and linked to the Galactic outflow

Radio emission

→ What is the origin of the non-thermal radio filaments?

MeerKAT: 1.284 GHz

SNR

SNR

0

→ Only in the GC

→ Tracers of intense (~1 mG), pervasive vertical magnetic field
Morris+96

→ Only in the GC

→ Tracers of intense (~1 mG), pervasive vertical magnetic field

→ Only in the GC

Source motion

Harps

→ Tracers of intense (~1 mG), pervasive vertical magnetic field
Morris+96

→ Generated by any source of relativistic particles which Thomas+20 illuminate the magnetic field line

→ Only in the GC

Source motion

Harps

→ Tracers of intense (~1 mG), pervasive vertical magnetic field
Morris+96

→ Generated by any source of relativistic particles which Thomas+20 illuminate the magnetic field line

→ Imply a magnetic field dominating the pressure

→ Only in the GC

Source motion

Harps

Tracers of intense (~1 mG), pervasive vertical magnetic field
Morris+96

→ Generated by any source of relativistic particles which Thomas+20 illuminate the magnetic field line

→ Imply a magnetic field dominating the pressure

Magnetic field divergent at ~0.5-1° from the plane? Ponti+20

2 (1-5)

→ Only in the GC

Source motion

Harps

3-5-2)

Tracers of intense (~1 mG), pervasive vertical magnetic field
Morris+96

→ Generated by any source of relativistic particles which Thomas+20 illuminate the magnetic field line

→ Imply a magnetic field dominating the pressure

Magnetic field divergent at ~0.5-1° from the plane? Ponti+20

Can the outflow generate shocks which enhance the field and accelerate particles? Ponti+20

-0.5

Source motion

Harps

→ Tracers of intense (~1 mG), pervasive vertical magnetic field
Morris+96

→ Generated by any source of relativistic particles which Thomas+20 illuminate the magnetic field line

→ Imply a magnetic field dominating the pressure

Magnetic field divergent at ~0.5-1° from the plane? Ponti+20

Can the outflow generate shocks which enhance the field and accelerate particles? Ponti+20

Alternatives:

Magnetic reconnection; Pulsar wind nebulae; Alfven waves; Magnetised wakes of molecular clouds; Stellar winds; Acceleration in young star clusters

Lesch+92; Serbin+94; Rosner +96; Shore +99; Bicknell +01; Yusef-Zadeh +03; 19; Bykov +17; Sofie +20

Source motion

Harps

(5))

→ Tracers of intense (~1 mG), pervasive vertical magnetic field
Morris+96

→ Generated by any source of relativistic particles which Thomas+20 illuminate the magnetic field line

→ Imply a magnetic field dominating the pressure

Magnetic field divergent at ~0.5-1° from the plane? Ponti+20

Can the outflow generate shocks which enhance the field and accelerate particles? Ponti+20

Alternatives:

Magnetic reconnection; Pulsar wind nebulae; Alfven waves; Magnetised wakes of molecular clouds; Stellar winds; Acceleration in young star clusters

Lesch+92; Serbin+94; Rosner +96; Shore +99; Bicknell +01; Yusef-Zadeh +03; 19; Bykov +17; Sofie +20

Importance of magnetic field

Source motion

Harps

Hot plasma (X-rays) warm dust (mid-IR) \rightarrow shocks (radio)

Coherent features on > 10^2 pc scales

→ Deeply interconnected and linked to the Galactic outflow

Hot plasma (X-rays) warm dust (mid-IR) \rightarrow shocks (radio)

Coherent features on > 10^2 pc scales

→ Deeply interconnected and linked to the Galactic outflow

→ Strong shocks at the chimney-ISM interface

Hot plasma (X-rays) warm dust (mid-IR) \rightarrow shocks (radio)

Coherent features on > 10^2 pc scales

→ Deeply interconnected and linked to the Galactic outflow

→ Strong shocks at the chimney-ISM interface

→ AFGL 5376 > 0.1 kpc molecular shock Uchida+94
WISE: 12.08 μm MeerKAT: 1.284 GHz WISE: 22.2 μm

Multi-phase multi-epoch Galactic outflow

plasma (X-rays) n dust (mid-IR) → :ks (radio)

Coherent features on > 10² pc scales

Deeply interconnected and linked to the Galactic outflow

→ Strong shocks at the chimney-ISM interface

→ AFGL 5376 > 0.1 kpc molecular shock Uchida+94

WISE: 12.08 μm MeerKAT: 1.284 GHz WISE: 22.2 μm

Multi-phase multi-epoch Galactic outflow

plasma (X-rays) n dust (mid-IR) → :ks (radio)

Coherent features on > 10² pc scales

Deeply interconnected and linked to the Galactic outflow

- → Strong shocks at the chimney-ISM interface
- → AFGL 5376 > 0.1 kpc molecular shock Uchida+94
- → Shocks over the entire perimeter of AFGL5376

Large scale cold Galactic outflow

Large scale cold Galactic outflow

Base Fermi bubbles

Base Fermi bubbles

AFGL 5376 similar to clouds at the base of the Fermi bubbles

Small scale molecular Galactic outflow

Small scale molecular - lactic outflow

Ponti+20

Small scale molecular - lactic outflow

Ponti+20

Small scale molecular Galactic outflow

Small scale molecular Galactic outflow

Galactic longitude

_		15 pc									
0.300	,		i.	(0.200		ì		24	0.100	

Multi-phase multi-epoch Galactic outflow

Hot plasma (X-rays) warm dust (mid-lR) → shocks (radio)

Coherent features on > 10² pc scales

→ Deeply interconnected and linked to the Galactic outflow

- → Strong shocks at the chimney-ISM interface
- → AFGL 5376 > 0.1 kpc molecular shock Uchida+94
- → Shocks over the entire perimeter of AFGL5376

SNR

H₃⁺ survey → outflow of warm diffuse gas

Foreground

A REAL PROPERTY.

SNR

(4-12)

SNR

<mark>X-rays: 1.5-2.6 keV</mark> Mid-IR: 22.2/12.08 μm <mark>Radio: 1.284 GHz</mark>

Multi-phase multi-epoch Galactic outflow

Hot plasma (X-rays) warm dust (mid-IR) → shocks (radio)

Coherent features on > 10² pc scales

Deeply interconnected and linked to the Galactic outflow

- → Strong shocks at the chimney-ISM interface
- → AFGL 5376 > 0.1 kpc molecular shock Uchida+94
- → Shocks over the entire perimeter of AFGL5376
- → Multi-phase (hot, molecular, warm-diffuse)

SNR

H₃⁺ survey → outflow of warm diffuse gas

Foreground

A REAL PROPERTY.

SNR

SNR

X-rays: 1.5-2.6 keV Mid-IR: 22.2/12.08 μm **Radio: 1.284 GHz**

Multi-phase multi-epoch Galactic outflow

Hot plasma (X-rays) warm dust (mid-IR) → shocks (radio)

Coherent features on > 10² pc scales

→ Deeply interconnected and linked to the Galactic outflow

- → Strong shocks at the chimney-ISM interface
- → AFGL 5376 > 0.1 kpc molecular shock Uchida+94
- → Shocks over the entire perimeter of AFGL5376
- → Multi-phase (hot, molecular, warm-diffuse)
- → Multi-scale and multi-epoch outflow

SNR

H_3^+ survey \rightarrow outflow of warm diffuse gas

Foreground

otrusit

SNR

X-rays: 1.5-2.6 keV Mid-IR: 22.2/12.08 µm Radio: 1.284 GHz

Multi-phase multi-epoch **Galactic outflow**

Hot plasma (X-rays) warm dust (mid-IR) \rightarrow shocks (radio)

Coherent features on > 10^2 pc scales

→ Deeply interconnected and linked to the Galactic outflow

→ Strong shocks at the chimney-ISM interface

- \rightarrow AFGL 5376 > 0.1 kpc molecular shock Uchida+94
- → Shocks over the entire perimeter of AFGL5376
- → Multi-phase (hot, molecular, warm-diffuse)
- → Multi-scale and multi-epoch outflow

What we do not understand:

Projection effects? Origin of protrusion? Hot plasma has small pressure \rightarrow Relic outflow? Different driver? (Cosmic rays? Alfven MHD waves? Fast&Cold outflow? Very hot plasma?) **AGN driven? Starburst?**

Fermi RGB image

Selig +15

The channel feeding the Fermi bubbles

ESA News/XMM-Newton/G. Ponti et al. 2019, Nature

Base of gamma-ray bubble

Galactic plane

Northern chimney

Sagittarius A*

Base of gamma-ray bubble

Southern chimney

ESA News/XMM-Newton/G. Ponti et al. 2019, Nature

The channel feeding the Fermi bubbles

ESA News/XMM-Newton/G. Ponti et al. 2019, Nature

Base of gamma ray bubble

Galactic plane

Northerr himne

Sagittarius A*

Does have an effect on CGM!

Base of gamma-ray bubble

Southern

ESA News/XMM-Newton/G. Ponti et al. 2019, Nature

Summary

eROSITA (Spektr-RG)'s launch Baikonur, July 13th, 2019

Source: Roscosmos

European Research Council

Rosat all-sky soft X-ray survey

European Research Council

Rosat all-sky soft X-ray survey

Milky Way center

Rosat all-sky soft X-ray survey

European Research Council

Global outflow?

erc

Fountains?

Inner outflow outer inflow?

Milky Way center

Rosat all-sky soft X-ray survey

European Research Council

Global outflow?

erc

How is the disc-CGM exchange?

Inner outflow outer inflow?

Milky Way center

Chaotic flow?

European Research Council

Milky Way center

eROSITA (first 6 months)

Discovery of the eROSITA bubbles!

European Research Council

North polar spur appears part of a bubble

Discovery of the eROSITA bubbles!

European Research Council

North polar spur appears part of a bubble

Such bubble has a Southern counterpart

Discovery of the eROSITA bubbles!

European Research Council

North polar spur appears part of a bubble

Such bubble has a Southern counterpart

→ Origin at the Galactic center

erc

Discovery of the eROSITA bubbles!

European Research Council

North polar spur appears part of a bubble

Such bubble has a Southern counterpart

→ Origin at the Galactic center

erc

Discovery of the eROSITA bubbles!

European Research Council

North polar spur appears part of a bubble

Such bubble has a Southern counterpart

X-rays: eROSITA y-rays: Fermi

→ Origin at the Galactic center

erc

Chimneys: The base of the Galactic outflow

ESA News/XMM-Newton/G. Ponti et al. 2019, Nature

Base of gamma-ray bubble

Galactic plane

Northern chimney

Sagittarius A*

Base of gamma-ray bubble

Southern chimney

Chimneys: The base of the Galactic outflow

Normal galaxies hold outflows to CGM

ESA News/XMM-Newton/G. Ponti et al. 2019, Nature

Galactic plane

Northern chimney

Sagittarius A*

Base of gamma-ray bubble

Southern chimney

eROSITA has the power to constrain the CGM

European Research Council

Predehl et al. 2020, Nature

Base of gamma-ray bubble.

Galactic plane

Northern chimney

Sagittarius A*

Base of gamma-ray bubble

Southern chimne

eROSITA has the power to constrain the CGM

European Research Council

How is the disc-CGM exchange?

Predehl et al. 2020, Nature

Southerr chimn

