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Ultra high energy cosmic rays
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UHECR propagation- GZK

GreisenZatsepin Kuzmin - GZK effect (1966)
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* |mplication: sources should lie within ~100 Mpc at 1020 eV
* Neutrinos produced hy the decay of r* and n

* Photons resulting from the decay of ¢




UHECR propagation- Magnetic Fields
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Figure 3. Distribution of UHECR deflections in two Galactic magnetic field models marked
PT2011 [44] and JF2012 [45] for the regular component. The energies of actual UHECRs are renor-
malized to show the distributions for E/Z = 100 EeV. The double-peak structure is mostly due to
the fact that UHECRSs from different Galactic hemispheres undergo different deflections.



Candidate sources
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Extensive Air Showers
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The Pierre Auger Observatory

~400 collaborators
110 institutions from 17 countries

Argentina - Australia - Brazil - Colombia - Gzech Republic - France - Germany -
Italy - Mexico - Netherlands - Poland - Portugal - Romania - Slovenia - Spain -
United Kingdom - United States

B Full members
[] Associate members




The Pierre Auger Observatory

Auger science case: “The Piemre Auger ObservatoryL. .. 1 employing a giant array of particle counters and an
optical fluorescence detectorl. . . 1aims at studying, with high statistics, cosmic rays with energies around
and above the so-called Greisen- Zatsepin- Kuzmin spectral cutoffl. . . 1ts main aims are:[ .. ]

1. a precise reconstruction of the energy spectrum...

2. the identification of primaries, even if only statistical...Are they protons, nuclei, or perhaps something
exotic? (e.g., the detection of a large amount of gammas and neutrinos would be an

inclication in favor of “exotic” theories...)...Inferences on mass composition will be drawn from the study of
shower properties that might constrain hadronic interaction models at energies well beyond the reach of
accelerator-based experiments...

3. a systematic study of the arrival diirections, that will inclicate if there is anisotropy in the distribution and/or
clusters which would indicate the existence of point sources...



The Pierre Auger Observatory
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Surface detector (SD) 1600
water Cherenkov detectors

1.5 km spacing

~3000 km?

Fluorescence detector (FD)

24UV telescopes
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The Pierre Auger Observatory

Each SD station is a tank filled with 12 t of

ultra-pure water overlooked by 3 PMTs that
measure the Cherenkov light produced by
the particle of the shower.




The Pierre Auger Observatory

The FD measures the longitudinal profile and thus the total
calorimetric energy (and also X ,,).
But it only operates in clear moonless nights (~10/aduty cycle)

—s Energy calibration using hybrid events




The Pierre Auger Observatory
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The Pierre Auger Observatory

dE/dx (PeV/g cm?)
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Energy spectrum
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Energy spectrum (2019)

combined spectrum log_(E/eV)
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Energy spectrum (2017)
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Energy spectrum- comparison with TA
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Composition
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Composition and Hadronic interactions

EPOS-L;-lC QGSJETII 04 _— SIBYLL 2.3¢

4 ™ T e e e T T e + ..... Fe
34* .................................................................................................................................................... ‘.H ......... N
:““f:\?‘E u’“ + b u"”
= B T —— BN oo st g L Tty ..o He

S o o ’. "”H

T e o

R S P

|
o
;Elé H**H“H + l i _ “ _ “H{h”ﬂ “ ‘J

o |

0; PSRRI {Hl { | g... |...} H{.{H.H.H*{ ...... H* e & {H.H. * *+

| gty

“27 170 175 180 185 190 195 200 17.0 175 180 185 190 195 200 17.0 17.5 180 185 190 195 200

Ig(E/eV)
A. Yushkov for the Pierre Auger Collaboration- ICRC 2019

19



Composition and Hadronic interactions

M.Mallamaci for the Pierre Auger Collaboration- ICRC 201/
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Figure 4: The evolution with energy of {InA) as obtained from the measured Xphx (squares). The results
obtained for X, (dots) [2] are also shown. EPOS-LHC (left) and QGSJetlI-04 (right) are used as reference
models. Square brackets correspond to the systematic uncertainties.
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Composition and Hadronic interactions

F. Sanchez for the Piene Auger Collaboration- ICRC 2019
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Take home message: no hadronic interaction model currently describes ultra
high energy showers properly
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Large scale anisotropies

Results published in Science 2017: dipole observed for E>8 EeV data, no anisotropy in 4-8 EeV data

THE ASTROPHYSICAL JOURNAL, 868:4 (12pp), 2018 November 20
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Figure 2. Maps in equatorial coordinates of the CR flux, smoothed in windows of 457, for the energy bins [4, 8] EeV (left) and E > 8 EeV (right). The Galactic plane
is represented with a dashed line, and the Galactic center is indicated with a star.

Table 3
Results of the First-harmonic Analysis in R.A. in the Three Bins above 8 EeV
Energy (EeV) Events a’ by ' ¥\ (deg) P(=r")
8-16 24,070 ~0.011 £ 0.009 0.044 + 0.009 0.046 104 4 11 3.7 x 107°
16-32 6604 0.007 £ 0.017 0.050 + 0.017 0.051 82 + 20 0.014
232 1513 ~0.03 £ 0.04 0.05 + 0.04 0.06 115 + 35 0.26

Now updated extended to higher energies
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Large scale anisotropies

Dipole strenght seems to increase with energy, BUT low statistics -> low significance

THE ASTROPHYSICAL JOURNAL, 868:4 (12pp), 2018 November 20 Aab et al.
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Figure 3. Evolution with energy of the amplitude (left panel) and direction (right panel) of the 3D dipole determined in different energy bins above 4 EeV. In the sky
map in Galactic coordinates of the right panel the dots represent the direction toward the galaxies in the 2MRS catalog that lie within 100 Mpc, and the cross indicates
the direction toward the flux-weighted dipole inferred from that catalog.

We find that the amplitude increases with energy above 4 EeV, with a constant amplitude being disfavored at the
3.1 level. A growing amplitude of the dipole with increasing energies is expected owing to the smaller deflections
suffered by CR at higher rigidities. The dipole amplitude is also enhanced for increasing energies owing to the increased
attenuation suffered by the CR from distant sources, which implies an increase in the relative contribution to the flux arising
from the nearby sources, leading to a more anisotropic flux distribution. 23



Large scale anisotropies

Equatorial dipole amplitude

Equatorial dipole phase
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Suggests transition from anisotropies of

Galactic origin below ~1 EeV to
extragalactic origin above few EeV

Extragalactic component could be sizeable
below 1 EeV, as long as it is sufficiently isotropic

E. Roulet for the Pierre Auger Collaboration- ICRC 2019
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Small/intermedliate scale anisotropies

Blind search - whole sky 1°x 1°grid o 5.6
Scan:
1° <y <30° =
32 EeV <E,;, <80 EeV S
Most significant excess: g [ R R Taauae T -180 — 3
R.A.-202. Dec--45. : : &
-
E,, - 38 Ee 5
P=21° =
Noys =188 Ny, =125
local Li-Ma significance-5.6c -90

post-trial p-value-2.5%
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Small/intermedliate scale anisotropies

-

Gen A is the closest radiogalaxy
D~3.6 Mpc

Scan:
1°<y<30°
32 keV <E;, <80 EeV

E., (EeV)
<

Most significant excess:
Ey, = 37EeV

P=28°

Mops = 203 Ny, = 141

local p-value-1.5x107
post-trial : 3.9¢

Search radius y (°)

L Caccianiga for the Pierre Auger Collaboration- ICRC 2019
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Small/intermedliate scale anisotropies

We expect that brighter objects contribute more to the flux, and we want to take into account interaction:
» Likelihood Method (for details see The Pierre Auger Collaboration- AplL, 853:129 (2018) )

Probability maps built including:

- Weight objects by their relative flux in the corresponding electromagnetic wavelength
- Different attenuation due to different distances to sources taken into account

- A smearing angle 6 around each object to take into account magnetic deflections » First free parameter
- Source fraction (rest isotropic) » Second free parameter (f,;,)
- Directional exposure normalized to the total number of events

Test statistic defined as the ratio of likelihoods: TS = 2 Log [£ (s, f,,;))/ £ (f ;= 0) ]

Scan in energy thresholds 32 EeV < Eth <80 EeV [1 EeV steps]
Test 4 different catalogs

L Caccianiga for the Pierre Auger Collaboration- ICRC 2019
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Small/intermedliate scale anisotropies

y-emitting AGNs Starburst Galaxies
Selected using Fermi 3FHL (was 2FHL) - UHECR flux proxy (1.4 Ghz)
UHECR flux proxy: & (E>10 GeV) - Selection based on Ackermanm 2and Becker- 09 with
33 SOUICES (including Cen A, Formax A, M87, Mind2) the addition of data from HEASARC Radio Master Catalog
Majority blazars of BL: Lac type and radio-galaxies of FR-1 - 32 sources (including Circinus, M82 M83...)
type

Swift-BAT 2MRS
UHECR flux proxy: & (14-195 keV) - UHECR flux proxy @ (k-band)
Different AGN sample than previous one (both radioloud - Traces local matter (some 10* sources)
and quied) - Local group taken away by selecting only events with
>300 sources D>IMpe

More details about catalog selection in ApJL, 853:129 (2018)

28
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Small/intermedliate scale anisotropies
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Small/intermedliate scale anisotropies

Starhurst Galaxies

180 |

o>
=

180

y-emitting AGNs

L Caccianiga for the Pierre Auger Collaboration- ICRC 2019
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Multi messenger astrophysics - neutrinos

young old

primary

TOP OF ATMOSPHERE

Earth-skimming v,

M. Schimp for the Pierre Auger Collaboration- ICRC 2019
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Multi messenger astrophysics - neutrinos
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Multi messenger astrophysics - neutrinos

No neutrino candidate found. Limits placed (depending on declination)

Single flavour e w |ceCube 2014 — Auger (1 Jan 04 - 31 Mar 17)
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FIGURE 1 | (Left) Distribution of the Fisher variable for the DGH search (see text) for simuiations compared to a small fraction of the data and assumed to be due to
cosmic rays. The cut is made at a value of the Fisher variable of 3.28. (Right) Limits to the point source fluxes as a function of equatonal declination obtained from the
non-obhservation of ES and DGH neutrino candidates up to March 31st 2017 (from Zas, 2018).
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Multi messenger astrophysics - neutrinos

No neutrino candidate found in correlation with GW events. Limits placed (depending on declination)

—— ~00% CL contour GW150914 LIGO & Virge
GwW150914 Auger fov: 8 € [90%, 95°] at UTC of GW150914 :
Auger fov: 8 € [75°, 90°) 10°
Auger fov: B € [60°, 75%]

Single ’Ilv?l \'.ll‘u Vy-ll 1:1 . : y s |

= Pierre Auger fluence limit
90% CL declination GW150914

10" 4

UHE neutrino spectral fluence (GeV cm™2)

Southern sky Northern sky
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Declination 6 (deg)

FIGURE 2 | (Left) Field of view of the Observatory exemplified at the instant of detection of the black hole coalescence event GW150914 by Advanced LIGO

(LIGO-Collat ). The band limits from top to bottom correspond to lines of zenith angles 95°, 807, 757, and 607, used to separate the neutrino search into
ES, DGH, and DGL C ha'meb The black contours give the 80% C.L. region of the reconstructed position of the BH merger as obtained by LIGO observations, (Right)
Upper limit at 90% C.L. to the neutrino spectral fluence in the 100 PeV to 25 EaV range as a function of declination (see text), for the detection of black hole merger

GW150914. The blue band is the 90% C.L. of the reconstructed source declination, illustrating the limited precision level achieved using just detections at two LIGO
sites.

Multi-Messenger Physics with the Pierre Auger Observatory Front. Astron. Space 5Sci. 6:24 (2019)



Multi messenger astrophysics - neutrinos

=~ 90% CL contour GW170817 UGO & Virgo

GW170817 + NGC 4993
Auger fov: 6 € [90°,95°) at UTC of GW170817

e Auger fov: 8 €(75°, 90°)
Auger fov: 8 € [60°, 75°]

75"

-75*

FIGURE 3 | Field of view of the Observatory in Earth-skimming and
down-going channels at the instant of the detection of neutron star merger

GW170817. The small red contour marks the event localization obtained by
the Ligo-Virgo collaborations (LIGO-Collaboration, 2018) and the black cross
is the position of NGC 4993, later correlated to the event by optical
telescopes (Coulter et al., 2017).

Limit for the NS-NS merger. We were quite lucky!

Multi-messenger
Observations of a Binary
Neutron Star Merger

The Astrophysical Journal Letters,
848:L12, 2017

GW 170817 Neutrino limits (fluence per flavor: v, +7,)
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FIGURE 4 | Upper imits at 90% C.L. on the neutrino spectral fluence from
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Multi messenger astrophysics - photons
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FIGURE 5 | (Left) Photon identification with a Boosted Decision Tree for signal (photon, blue), background (proton, red) and data (black). For simulations, both the
training and the test samples are shown. The cut at the median of the photon distribution is indicated by the dashed line. QGSJET-II-04 is used as high-energy
hadronic interaction model. (Right) Compilation of upper limits on the integral photon fluxes from Aab at al. (2017e). Blue arrows: Integral photon upper limits from the
9 year hybrid data sampie assuming a photon flux following £ ~2 and with no background subtraction. The limits obtained when the detector systematic uncertainties
are taken into account are shown as horizontal segments (light blue) delimiting a dashed-filled box at each energy threshold; Black arrows: Nine year SD data sample
(Bleve, 2016). Previous data from Auger as well as data from TA, AGASA, Yakutsk, and Haverah Park are included for comparison. The lines and shaded regions give

the predictions for top-down models and GZK photon fiuxes, respectively, assuming different parameters (references can be found In Aab et al., 2(

)1 Tt').
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Multi messenger astrophysics - photons
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FIGURE 6 | Gamma-ray spectrum from the Galactic center region as
measured by the H.E.S.S. collaboration (red points) (Abramowskl et al., 2016).
The measured photon flux is extrapolated into the EeV range, given the quoted
spectral index and its uncertainties (blue shaded region). The Auger limit (Aat

al., 2017a) Is indicated by a green line (the green band reflects again the
spectral uncertainties of the gamma-ray spectrum). A spectral index with
cutoff energy Equt = 2.0 - 108 TeV is indicated by the dashed line.
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J. Rautenberg for the Pierre Auger Collaboration- ICRC 2019
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Search for neutrino-UHECR conrelation

peylp — w0

- Decay lenght is about ~ 9.2 (En/EeV) kpc - > they can reach us from Galactic sources

Neutrons can be produced in the proximity of the source

- Neutron-induced showers are indistinguishable from proton-induced ones

- -> need to look for localized excesses

Results for the Most Significant Target from Each Target Set

Class R.A.[°] Decl. [°] Obs Exp Flux U.L. E-Flux U.L. p-value p-value
(km=2 yr=1) (eVem=2s™!) (penalized)

msec PSRs 260.27 —-24.95 237 214 0.019 0.14 0.058 0.98
y-ray PSRs 8.59 —-5.58 176 149 0.024 0.18 0.016 0.70
LMXB 264.57 —-26.99 265 219 0.028 0.20 0.0012 0.10
HMXB 152.45 —-58.29 283 248 0.019 0.14 0.014 0.49
H.E.S.S. PWN 128.75 —45.60 275 248 0.018 0.13 0.043 0.53
H.E.S.S. other 269.72 —=24.05 235 211 0.019 0.14 0.054 0.59
H.E.S.S. UNID 266.26 —-30.37 251 227 0.018 0.13 0.055 0.57
Microquasars 262.75 —-26.00 247 216 0.022 0.16 0.020 0.23
Magnetars 81.50 —66.08 268 241 0.016 0.11 0.040 0.48
Gal. center 266.42 -29.01 234 223 0.014 0.10 0.24
Gal. plane |Gal. lat.| < 1217 16965 17197 0.077 0.56 0.96

Search at different energy thrensolds, results from The Pierre Auger Collaboration, ApJ, 789 (2014) L34 38



Search for neutrino-UHECR conrelation

pylp — N v, e T vy, 4

_,mlep _ yryep

It is expected that high-energy neutrinos
are produced near ultra-high energy
cosmic rays accelerators (whatever
they may be)
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Search for neutrino-UHECR correlation

WG presented at UHECR 2014 originally with IceCube, Telescope Amray and Auger

- in2017 ANTARES enters the WG.
First results presented at ICRC 2015 and published in JCAP 1601 (2016) 01, 037.
Updated at ICRC 2017 with new neutrino data from lceCube and 1 more year of TA data

Three analyses:

1) Cross-correlation method using the high-energy cascades and the high-energy tracks
2) Likelihood method stacking the high-energy cascades and the high-energy tracks

J) Likelihood method stacking UHECRs and using the neutrino point source sample

In the first publication, potentially interesting results were found in the analyses done between
UHECR and high-energy cascades. These p-values have become larger with more statistics.
Updated results was presented at UHECR 2018 and ICRC 2019 with new data from Auger, TA and
cata from ANTARES for the first time.

The p-values for cascades have increased up to ~2.7x 10-2
- See also L Caccianiga for the 4 collaborations, http://arxiv.org/abs/1905.03997
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The Pierre Auger Observatory - Auger Prime

The Future is here: Auger Prime
Major upgrade of the detector:

Faster electronics

Scintillators on top of (almost) each WCD

a fourth, smaller PMT to extend dynamic range
radio antennas on (almost) each WCD

Extended FD operation to periods with higher night
sky background to have more statistics

Deployment already started

1 Scintillator (3.8 m?)
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The Pierre Auger Observatory - Auger Prime
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The Pierre Auger Observatory - Auger Prime

SSD will mostly be efficient for vertical showes: for
horizontal showers radio will be exploited

AERA detector (small area and small spacing) already
operational inside Auger

-> Extend to the whole array

electromagnetic
component

Figure 7. Sketch of a honzontul air shower. The electromagnetic as well as the hadronic air shower components are ahsorbed i
atmosphere and only muons penetrate to the detectors. The atmosphere is transparent to radiation with frequencies in the 30 - 80 MHz
band. (courtesy Ewa Holt)
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Thank you for your attention!
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Backup slides




Discussion

CenA
Most contributing source to
2MRS, y-AGNs apd Swift-BAT

NGC 4945

Most contributing source to
starhurst

NGC 253

2m.most contributing
source to starburst
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Evolution in time

| Starburst galaxies - E > 38 EeV |

Cumulated TS > 38 EeV
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Model Excess Map

Model Excess Map - Starburst galaxies - E > 38 EeV
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Parameter space

Search Radius [ ° ]

Starburst galaxies - E > 38 EeV
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