AGN feedback with XRISM and Athena

Matteo Guainazzi, Athena Study Scientist and XRISM ESA Project Scientist

<u>Main collaborators:</u> Sibasish Laha (UCLA, San Diego, USA) Annalia Longinotti (Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, Mexico)

and the whole Athena Science Study Team (ASST)

References:

Dadina, Guainazzi, Cappi, Vignali, Malaguti, Comastri, 2010, A&A, 516, 9 Laha, Guainazzi, Chakravorti, Dewangan, & Kembhavi, 2014, MNRAS, 441, 2613 Longinotti, Krongold, Guainazzi, Giroletti, Panessa, Constantini, Santos-LLeo, Rodriguez-Pascual, 2015, ApJ, 813, L39 Laha, Guainazzi, Chakravorti, Dewangan, & Kembhavi, 2016, MNRAS, 457, 3896 Laha, Guainazzi, Ghosh, Piconcelli, Gandhi, Markowitz, Bagchi, 2018, ApJ, 868, 10 Barret, Decourchelle, Fabian, Guainazzi, Nandra, Smith, den Herder, 2019, arXiv:1912.04615

Ce

AGN feedback

McConnell & Ma, 2013, ApJ, 764, 184

- Relations between
 black hole mass and
 host galaxy bulge
 mass/size estimators
- Strongest correlation
 vs. stellar velocity
 dispersion (M_{BH} ∝ σ⁴⁻⁵)
- Black hole size/bulge
 size ~ 10⁻⁸-10⁻⁹
- Black hole "sphere of influence" ~pc:

$$R_{\rm BH,sph} = \frac{GM_{\rm BH}}{\sigma_*^2} \simeq 10.7 \frac{M_{\rm BH}}{10^8 \rm M_{\odot}} \left[\frac{\sigma_*}{200 \rm km \, s^{-1}}\right]^{-2} \, \rm p$$

M_{BH} and M_{gal} scaling laws

derivation of these formulae in the review by Fabian, 2012, ARA&A, 50, 455

[In reality the relevant Eddington limit is that on dust, leading to the observed M_{BH}/M_{gal} normalisation: $\sim \sigma_T/\sigma_d \sim 10^{-3}$]

Black holes have sufficient energy to unbind galaxies:

$$E_{\rm BH} = 0.1 M_{\rm BH} c^2 |E_{\rm gal} \approx M_{\rm gal} \sigma^2 \qquad M_{\rm BH} \approx 1.4 \times 10^{-3} M_{\rm gal}$$
$$E_{\rm BH} / E_{\rm gal} \approx 1.4 \times 10^{-4} (c/\sigma)^2$$

 $\sigma < 400 \text{ km s}^{-1}$, so $E_{\rm BH}/E_{\rm gal} > 80$

Co-evolution of accreting BH and star formation

Madau & Dickinson, ARAA, 52, 415

Morphological resemblance between the two curves Further evidence for AGN/galaxy co-evolution

Feedback and cosmological evolution of galaxies

di Matteo et al., 2005, Nature, 433, 604

Example of a simulation of BH accretion and star formation after the merging between two Milky Way-like galaxies

When is feedback important?

di Matteo et al., 2005, Nature, 433, 604

 $L_{KE} = (dE_{feeback}/dt) \sim 5\% L_{accretion}$

When is feedback important?

di Matteo et al., 2005, Nature, 433, 604

Hopkins & Elvis, 2010, MNRAS, 401, 7

Galaxy molecular outflows

Cicone et al., 2014, A&A, 562, 21

Feruglio et al., 2010, A&A, 518, L155

Recent discovery of molecular outflows in CO(1-0) observations of AGN-powered Ultra-luminous IR Galaxies (ULIRG)

- *E.g.*: Markarian 231:
- Outflow rate $\sim 700 M_{\odot}$
- Spatial scale ~0.6 kpc
- Gas fully blown out the galaxy in ~1.5x10⁷ years
- Salpeter time ~5x107 years]
- Energy deposited into the galaxy ~6x10⁵⁷ erg
- [Binding energy of the galaxy ~8x10⁵⁷ erg]

Molecular outflows are AGN driven

Laha, et al., 2018, ApJ, 868, 10

Evidence of outflow-driven feedback

Cresci et al., 2015, ApJ, 799, 82

Page et al., 2012, Nature, 485, 213

Star formation is inhibited in Ionised gas ([OIII]) in powerful QSOs produce +ve and -ve feed-back $L_X > 10^{44} \text{ erg/s AGN} (1 < z < 3)$ XMM-COSMOS XID2028 (z=1.59) 1.0 300 250 [M_o yr⁻¹] 0.5 200 arcsec 0.0 ٨ 150 SFR 100 -0.5 V 50 -1.0 0 -1.0 -1.5 -0.5 1.0 0.0 0.5 1.5 10⁴³ 10⁴⁴ 10⁴⁵ arcsec $L_x [erg s^{-1}]$ H_{α} (SFR~230 M \odot yr⁻¹) Countours: [OIII] "positive" and v~600-800 km s⁻¹ "negative" feedback! dM_{out}/dt≈1000 M_☉ yr⁻¹

AGN X-ray winds: Warm absorbers

Detmers et al., 2011, A&A, 534, A37

Resonant absorption lines: He-/H-like ions of C, O, Ne, Mg, N, Si, Fe ...

estimate of incidence fraction in Laha et al., 2014, MNRAS, 441, 2613

- Present in $77\pm9\pm^{3}_{14}\%$ of nearby AGN
- Large range of physical properties (*N_H*, *v_{out}, <i>n* ...)
- Mostly observed at grating resolution $[E/\Delta E \sim 10^{3-4}]$

Physics driven by the ionisation parameter:

AGN X-ray winds: Warm absorbers

Detmers et al., 2011, A&A, 534, A37

Resonant absorption lines: He-/H-like ions of C, O, Ne, Mg, N, Si, Fe ...

estimate of incidence fraction in Laha et al., 2014, MNRAS, 441, 2613

- Present in $77\pm9\pm^{3}_{14}\%$ of nearby AGN
- Large range of physical properties (*N_H*, *v_{out}, <i>n* ...)
- Mostly observed at grating resolution $[E/\Delta E \sim 10^{3-4}]$

Physics driven by the ionisation parameter:

AGN X-ray winds: Ultra-Fast Outflows (UFOs)

Longinotti et al., 2015, ApJ, 813, L39

discovery by Tombesi et al., 2010, A&A, 521, 57; Gofford et al., 2013, MNRAS, 430, 60

- Sub-relativistic speeds
 (*v*_{out}>0.1 c)
- Resonant He/H-like Fe absorption lines (≥7 keV)
- Present in ~30% of nearby AGN and radio-galaxies
- High-column density (≥10²³ cm⁻²), highly-ionised
- Mostly (but not all) observed at CCD resolution [$E/\Delta E \sim 10^{1-2}$]
- Transient (exception: PDS456)

Crenshaw et al. 2003, ApJ, 594, 116

Assuming mass conservation through a spherical shell:

$\dot{M}_{\rm out} = 4\pi r N_{\rm H} \mu m_p C_g v_r$

Crenshaw et al. 2003, ApJ, 594, 116

Assuming mass conservation through a spherical shell:

Crenshaw et al. 2003, ApJ, 594, 116

Assuming mass conservation through a spherical shell:

Crenshaw et al. 2003, ApJ, 594, 116

Assuming mass conservation through a spherical shell:

Crenshaw et al. 2003, ApJ, 594, 116

Assuming mass conservation through a spherical shell:

Crenshaw et al. 2003, ApJ, 594, 116

Assuming mass conservation through a spherical shell:

Energetics of AGN outflows

Tombesi et al., 2013, MNRAS, 430, 1102

Due to the v_{out}^3 dependency, UFOs carry more energy

AGN feed-back ("quasar mode")

Tombesi et al., 2013, MNRAS, 430, 1102

C_f - only one determination in an individual source

Nardini et al., 2015, Science, 347. 860

Launch radius (r) of AGN winds

Laha et al., 2016, MNRAS, 457, 3896

The launch radius can be estimated only *indirectly* in most cases ...

... leading to uncertainties up to 1 order-of-magnitude

The physics of energy-conserving outflows

Faucher-Giguère & Quataert, 2012, MNRAS, 423, 605

Zubovas & King, 2012, ApJ, 745, L34

Energy-driven (at least at galactic scale)

Smith et al., 2019, ApJ, 887, 69

cf. Gaspari et al., 2020, Nature Astronomy, 4, 10

• Geometry of accretion and ejection flow near the BH?

- Geometry of accretion and ejection flow near the BH?
- Outflow ejection and acceleration mechanisms?

- Geometry of accretion and ejection flow near the BH?
- Outflow ejection and acceleration mechanisms?
- Partition of kinetic power into outflows and jets

- Geometry of accretion and ejection flow near the BH?
- Outflow ejection and acceleration mechanisms?
- Partition of kinetic power into outflows and jets
- Relation between accreted and ejected mass rate?

- Geometry of accretion and ejection flow near the BH?
- Outflow ejection and acceleration mechanisms?
- Partition of kinetic power into outflows and jets
- Relation between accreted and ejected mass rate?
- How much energy/momentum rate are needed for feedback?

- Geometry of accretion and ejection flow near the BH?
- Outflow ejection and acceleration mechanisms?
- Partition of kinetic power into outflows and jets
- Relation between accreted and ejected mass rate?
- How much energy/momentum rate are needed for feedback?
- Connection between ionised, neutral and molecular phases

- Geometry of accretion and ejection flow near the BH?
- Outflow ejection and acceleration mechanisms?
- Partition of kinetic power into outflows and jets
- Relation between accreted and ejected mass rate?
- How much energy/momentum rate are needed for feedback?
- Connection between ionised, neutral and molecular phases
- Distribution function of basic observables in complete samples?

- Geometry of accretion and ejection flow near the BH?
- Outflow ejection and acceleration mechanisms?
- Partition of kinetic power into outflows and jets
- Relation between accreted and ejected mass rate?
- How much energy/momentum rate are needed for feedback?
- Connection between ionised, neutral and molecular phases
- Distribution function of basic observables in complete samples?
- How does the molecular outflows form in hot outflows?

The cosmological impact of AGN outflows

Fiore et al., 2017, A&A, 601, 143

[Shown here: the ratio of the average mass outflow ratio density versus the average star formation density]

- AGN outflows are on average powerful enough to clean galaxies in massive galaxies at z<2
- <u>Tentative conclusion</u>, <u>though</u>: "At higher redshift, uncertainties in both wind mass outflow [...] and SRFD are today too big."

Galaxy clusters

- The largest gravitationallybound structures in the Universe
- 100-1000s galaxies in a volume comparable to that between the Milky Way and Andromeda
- Formed at the nodes of the cosmic web at z~2-3
- Optical (white/yellow): galaxies
- Solution X-rays (purple glow): T≥10⁶ K
 plasma
- Invisible: dark matter (85% of the total mass in the cluster)

Gas cooling time

Fabian, 2012, ARA&A, 50, 455

Mittal et al., 2010, A&A, 501, 835

The X-ray emitting gas implies short cooling times, and very high levels of star formation (10²⁻³ M_☉/year)— not seen!

Lack of cool gas from X-ray spectroscopy

Peterson et al., 2003, ApJ, 590, 207

Sanders et al., 2008, MNRAS, 385, 1186

Sanders & Fabian, 2007, MNRAS, 381, 1381

McNamara et al., 2009, ApJ, 698, 594

Sanders & Fabian, 2007, MNRAS, 381, 1381

McNamara et al., 2009, ApJ, 698, 594

Sanders & Fabian, 2007, MNRAS, 381, 1381

McNamara et al., 2009, ApJ, 698, 594

Sanders & Fabian, 2007, MNRAS, 381, 1381

McNamara et al., 2009, ApJ, 698, 594

Sanders & Fabian, 2007, MNRAS, 381, 1381

McNamara et al., 2009, ApJ, 698, 594

Is this indeed feedback from the radio AGN?

Hlaveck-Llarrondo et al., 2015

Forman et al. 2007, ApJ, 665, 1057

luminosity in the cooling region

E (observed), keV

Systematics effects kill CCD measurements

Sanders et al. 2020, A&A, 633, 42

32.6 Ms of Full Frame and 19.7 Ms of Extended FF calibration data in EPIC-pn (CCD) yields a systematic accuracy of ~150 km s⁻¹

~200 ks of self-calibrated Hitomi/SXS data yield x10 better accuracy

Moderate metal mixing from core to outskirts

Merrier et al., 2018, SSRv, 214, 129

X-ray spectroscopy, today

Pinto et al., 2018, MNRAS, 480, 4113

Guainazzi et al., 2015, JATIS, 1, 7001

X-ray spectroscopy, today

Pinto et al., 2018, MNRAS, 480, 4113

Guainazzi et al., 2015, JATIS, 1, 7001

X-ray spectroscopy, today

Pinto et al., 2018, MNRAS, 480, 4113

Guainazzi et al., 2015, JATIS, 1, 7001

X-ray spectroscopy, tomorrow: µ-calorimeters

Credit: F. Paerels (Columbia University)

The technology of micro-calorimeters will bring spectroscopy of "cold" plasma into a totally unexplored regime

Open the window of non-dispersive, imaging high-resolution spectroscopy

X-ray spectroscopy, tomorrow: µ-calorimeters

Credit: F. Paerels (Columbia University)

The technology of micro-calorimeters will bring spectroscopy of "cold" plasma into a totally unexplored regime

Open the window of non-dispersive, imaging high-resolution spectroscopy

X-ray spectroscopy, tomorrow: µ-calorimeters

Credit: F. Paerels (Columbia University)

The technology of micro-calorimeters will bring spectroscopy of "cold" plasma into a totally unexplored regime

Open the window of non-dispersive, imaging high-resolution spectroscopy

Dynamical measurement with a µ-calorimeter

XRISM Science Team, in preparation

A CCD imaging spectrometer can hardly do better than 1000 km s⁻¹

X-Ray Imaging Spectroscopy Mission

- Following the demise of Hitomi operations, JAXA/NASA proposed a mission to recover the "Resolving astrophysical problems by precise highresolution X-ray spectroscopy" science theme: XRISM
 European (ESA/SRON/UniGE) participation
- Payload requirements:
 - Micro-calorimeter (Resolve): ≤7 eV energy resolution in the 0.3-12 keV energy range, 3'x3' field-of-view
 - CCD detectors (Xtend): Large-field (≥30'x30'), ≤200/250 eV (B/EoL) energy resolution @6 keV
 - Soft X-ray telescope, ≤1.7' Half Energy Width
- Launch due ≤end of the Japanese Fiscal Year 2021

Full Absorption Measure Distribution of AGN winds

Ion

Fe XXV

Fe XXV

Fe XXVI

Fe XXVI

Fe XXIV

Fe XXIV

Transition

1s-2p

1s-3p

1s-2p

1s-2p

1s-2p

1s-2p

 $E_{\rm rest}$ (keV)

6.70

7.88

6.97

6.95

6.66

1.17

Credit: J.Kaastra (SRON)

 $S/N(n\sigma)$

20.4

5.3

5.3

2.8

6.0

8.0

XRISM will detect a full series of Fe XXVI to XXVI transition, including higher Ly-α orders

Characterisation of the wind dynamics (PDS456)

Credit: K.Hagino (ISAS)

XRISM/Resolve spectra of PDS456

Turbulent velocity of 5000 km/s (Suzaku/CCD constraint)

3 dynamical components of 3000 km/s, separated by 0.02c each

Wind launch radius via re-emission (NGC4151)

Credit: J.Miller (Un. Michigan)

Determination of the wind launch radius through the width of the *emission* lines scattered by the outflow

[Resolve simulations of NGC4151 in two different flux states]

Calorimetry of AGN-uplifted hot gas in M87

Credit: A. Simionescu (SRON)

100 ks would allow Resolve to measure the velocity of the uplifted gas with $\Delta v = \pm 40$ km/s

Athena as an L-class ESA mission

Science theme: The Hot and Energetic Universe

- The Hot Universe: How does baryonic matter assemble in the large-scale structures? How do they evolve from the formation epoch to the present day?
- The Energetic Universe: How do black holes grow and shape galaxies?
- The Observatory and Discovery science:
 - Observatory science across all corners of astrophysics
 - Fast response (≤4 hours) capability to study transient source

Athena: the Hot Universe

Credit: A. Rau (MPE) and the WFI Team

Collect the largest X-ray spectroscopic sample of $L_X \leq L^*$ AGN up to $z \sim 8$

Wide Field Imager (WFI): Silicon Active Pixel Detector (DEPFET) 2.2" pixels - $\Delta E \le 170 \text{ eV}$ @6 keV - Fast Chip for \ge Crab science

Athena: the Energetic Universe

Credit: D.Barret (IRAP) and the X-IFU Team

Athena: large effective area

Barret et al., 2019, arXiv:1912.04615

Resolve vs. X-IFU: fight of Titans ...

Credit: D.Barret (IRAP) and the X-IFU Team

Cucchetti et al, 2018. A&A, 6120, 173

z=0.1 galaxy cluster, R₅₀₀=1.1 Mpc, T₅₀₀=4.2 keV

Weak line sensitivity

<u>Resolve</u>: 35 pixels, 30" size each, ø3' <u>X-IFU</u>: ~3180 pixels, 5" size each, ø5'

Outflow spectroscopy on dynamical time-scales

Cappi et al., 2013, arXiv:1306.2330

Credit: D.Barret (IRAP) and the X-IFU Team

 $NGC4051 - M_{BH} \sim 1.6 \times 10^6 \ M_{\odot} \qquad PDS456 - M_{BH} \sim 10^9 \ M_{\odot}$

The exposure times are comparable to the time needed to cover/uncover the X-ray source

Full structure of the AGN wind with X-IFU

Luminari et al., 2018, A&A, 619, 419

Chasing AGN outflows at the peak of AGN activity

Georgakakis et al., 2013, arXiv:1306.2328

The WFI survey will discover 100s of AGN outflows at z=1-4

The brightest can be followed-up with dedicated X-IFU observations

kpc-scale AGN-ISM interaction with Athena

Dadina et al., 2010, A&A, 516, 9

Cappi et al., 2013, arXiv:1306.2330

X-IFU simulation of the nearby Seyfert Galaxy NGC5252

Spatially-resolved spectroscopy of cavities

Credit for simulations: prof. S. Heinz (University of Wisconsin)

Croston et al., 2013, arXiv:1306.2323

Spatially-resolved spectroscopy of cavities

Credit for simulations: prof. S. Heinz (University of Wisconsin)

Croston et al., 2013, arXiv:1306.2323

Mass deposition rate: Athena vs. XMM-Newton

Croston et al., 2013, arXiv:1306.2323

Especially for the coolest lines (labelled) the mass estimates improve by ~2 orders-of-magnitude

Mass deposition rate: Athena vs. XMM-Newton

Croston et al., 2013, arXiv:1306.2323

Especially for the coolest lines (labelled) the mass estimates improve by ~2 orders-of-magnitude

From local to intermediate redshift Universe

Croston et al., 2013, arXiv:1306.2323

WFI map of ripples and shocks in a z=0.05 galaxy cluster

WFI (20 ks) temperature map of a z=0.1 radio galaxy in a group environment

Athena programmatic

- As of November 2019 transition to Phase B1
 - *"From a community dream (Phase A) to a concrete reality in the ESA Science Program"*
- Adoption: Q4/2021, Launch early 2030s
- A community of over 800 scientists actively supports it
- Designed to address the Hot and Energetic Universe, will impact virtually
 all corners of astrophysics
- Performance exceeding any existing or planned mission by more than one order-of-magnitude over several parameter spaces