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Papers	on	NASA	ads	
as	a	funcJon	of	Jme	

N	~	4000	e(y-2012)/3	

1	paper/minute	by	2027	
1	paper/second	by	2038	



ML:	what	is	it?	

Astronomical	data	

Points	in	some	
high-

dimensional	
space	

With	labels	
Without	labels	

Supervised	
classificaJon	
or	regression	

Clustering	
	

Dimensionality	
reducJon	



Finding	segregated	subsystems	of	
stellar-mass	black	holes	in	globular	clusters	

A	few	BHs	in	globular	clusters	were	spo]ed	observaJonally:		
M22	(Strader	et	al.	2012);	M62	(Chomiuk	et	al.	2013);	
	47	Tuc	(Miller-Jones	et	al.	2015;	Bahramian	et	al.	2017)	

	M10	(Shishkovsky	et	al.	2018);	NGC	3201	Giesers	et	al.	(2018)		
	
	
	
	

Globular	clusters	produce	thousands	of	BH:	
how	many	are	retained?	

	
	
	

They	have	dynamical	effects	and	may	merge	and	
produce	gravitaJonal	waves	

	
	



ClassificaJon	problem	with	
numeric	features	

•  Half-Light	Radius	
•  Central	Surface	

Brightness	
•  Central	Velocity	

Dispersion	
•  Total	Luminosity		
•  RelaxaJon	Time	
•  Core	Radius		

Askar,	Askar,	Pasquato,	Giersz	
2018	MNRAS	485,	5345	

Low-dimensional	
feature	space,	
observed	in	actual	
globular	clusters	
(e.g.	Harris	1996),	
easy	to	extract	
from	simulaJons	

~	2000	state-of-
the-art	dynamical	
simulaJons	from	
MOCCA	Survey	I	
(Askar	et	al.	2017)	
	



ClassificaJon	problem	

Metrics:	precision	(orange	fishes	caught	/	total	caught	fishes);	
recall	(orange	fishes	caught	/	total	orange	fishes);	F-score	harmonic	mean	of	precision	and	recall	



Simple	tree	models	perform	well	

straJfied	CV	



Decision	tree	model	

Final	predicJon	(leaf)	
based	on	proporJon	of	
BH	subsystem	hosts	

More	splits	on	other	
parameters	

Branch	split	on	
one	structural	
parameter	

e.g.	
core	radius	>	1.15	

pc	



Physical	interpretaJon	

Hosts/Total	
	

162/1289	

Rc	>	1.15	pc	
yes	

yes	

no	

no	

Hosts/Total	
	

29/963	

Hosts/Total	
	

133/326	

Hosts/Total	
	

9/148	

Hosts/Total	
	

124/180	

	L	>	2.7E5	L¤	

First	few	branches	of	the	learned	tree	
	
First	split	is	on	core	radius:	black	hole	
subsystem	hosts	have	large	cores	due	
to	dynamical	heaJng	
	
Second	split	on	total	luminosity:	big	
clusters	produce	more	black	holes,	
have	higher	retenJon	due	to	higher	
escape	velocity	



Comparison	with	real	GCs	
Green	row	=	predicted	BH	subsystem	host	
by	all	models	e.g.	NGC	288,	M10	
	
Results	compare	well	with	other	methods	
(Askar	et	al.	2019	marked	with	*)	





Now	some	unsupervised	ML	

Astronomical	data	

Points	in	some	
high-

dimensional	
space	

With	labels	
Without	labels	

Supervised	
classificaJon	
or	regression	

Clustering	
	

Dimensionality	
reducJon	



What	can	we	do	without	labels	

•  Reduce	data-points	to	fewer	representaJve	
data-points	(finding	groups	in	data;	clustering)	
– does	k-means	ring	a	bell?	

•  Reduce	coordinates/dimensions	to	fewer	
representaJve	coordinates	(dimensionality	
reducJon)	
– You	all	know	PCA,	right?	nonlinear	version	of	it	

reduce	rows	VS	reduce	columns	



Example:	chemical	tagging	
•  Field	stars	may	come	from	disrupted	open	clusters	
•  If	each	OC	had	disJncJve	chemistry,	we	can	use	abundances	as	a	

fingerprint	of	the	parent	cluster	
E.g.	Price-Jones	&	Bovy	2019,	MNRAS,	487,	871;	Kos	et	al.	2018	MNRAS,	473,	4612;	Traven	et	al.	2017	APJs,	228,	24	

	

Parallel	coordinate	display	of	12	abundances	of	330	main	sequence	stars	from	GAIA-ESO	
(Gilmore	et	al.	2012).	Stars	selected	in	real	open	cluster	fields	(courtesy	A.	Bragaglia),	
	parent	open	cluster	color-coded;	can	we	recover	them?	



12D	->	2D	

•  If	we	could	represent	this	12D	space	on	a	plane...	
•  PCA	and	keep	the	first	two	components?	Nah...	



12D	->	2D	

•  If	we	could	represent	this	12D	space	on	a	plane...	
•  PCA	and	keep	the	first	two	components?	Nah...	

t-distributed	stochasJc	
neighbor	embedding	



t-SNE	
•  Local	(short)	distances	ma]er	more	than	long	
distances		

•  Place	points	in	the	plane	to	minimize	a	loss	
funcJon	that	keeps	nearby	points	nearby	

Similarity	in	
high	dimension	

Similarity	in	
low	dimension	

Small	pij	
(faraway	
points)	
do	not	affect	
the	loss	

2D	

1D	

pij	

qij	

van	der	Maaten	&	Hinton	2008,	Journal	of	machine	learning	research,	9,	2579	
	



Dimensionality	reducJon	

12	dimensional	space	represented	on	the	plane	with	t-SNE	





Learning	the	spectral	index	of	
turbulence	of	simulated	molecular	
clouds	from	projected	density	maps	

	
•  Turbulence	in	molecular	clouds	modulates	
star	formaJon,	physics	sJll	not	fully	
understood	(Elmegreen	&	Scalo	2004,	
Hennebelle	&	Falgarone	2012)	

•  Velocity	power	spectrum	of	turbulence	can	be	
measured	directly	through	e.g.	line-of-sight	
velocity	(Koch	2019)	



QuesJon	

•  Can	we	measure	the	turbulence	index	of	
simulated	turbulent	gas	from	density	maps?	

•  In	parJcular	discriminate	between	
Kolmogorov	Pv(k)	=	k-11/3	and	Burgers	Pv(k)	=	
k-4	spectra		



SimulaJons	
•  1000		simulaJons		of		turbulent		gas		with		RAMSES2	
[Teyssier	2002]	AMR	code	

•  10x10x10		pc		box,	iniJally	uniform	density	gas	
(6.77×10−22g/cm3),		total		mass		of		104Msun.	

•  Gas		kept	isothermal	at		temperature	T=10K	
•  Injected	a	divergence	free,	turbulent,	supersonic	(Mach	
1.41)	velocity	field	with	spectrum	index	n=11/3	or	4	

•  Evolved	for		0.5		Myr,		solving		Euler’s		equaJon		with		a		
Lax-Friedrichs		Riemann	Solver,	periodic		boundaries		
without	self-gravity	and	magneJc	fields	



Train/test/holdout	split	

•  500	sims	w.	Kolmogorov	index,	500	w.	Burgers	
•  400+400	build	the	train	set	->	3	projecJons	(x,y,z)	
X	4	flip/flop	X	4-way	cut	=		38400	training	images	

•  50+50	in	the	test	set	=	4800	test	images	
•  50+50	never	looked	at	(holdout	set)	=	4800	images	

80%	 10%	 10%	



Images	

•  250x250	pixels,	grayscale;	each	image	
corresponds	to	¼	of	the	box,	seen	in	
projecJon	along	an	axis	(x,y,z)	

•  Luminosity	encodes	log	column	density	

Kolmogorov	 Burgers	



Deep	learning	setup	
•  Keras	on	top	of	Tensorflow	on	workstaJon	
with	a	Titan	V	GPU	

•  Four	convoluJonal	layers	(with	max	
pooling)	+	three	dense	layers,	RELU	act.	

•  Dropout	regularizaJon	



Performance	on	holdout	set	
Predicted	Kolmogorov	 Predicted	Burgers	

Kolmogorov	 2113	 287	

Burgers	 812	 1588	

Accuracy	77%	

Training	learning	curve	

ValidaJon	learning	curve	



TesJng	on	different	indices	

We	ran	1000	more	simulaJons	with	turbulence	index	that	ranges	conJnously	from	3	(le|)	
to	4.5	(right).	What	will	the	net	predict?	

3	 4.5	



PredicJons	

Predicted	
Kolmogorov	
	
Predicted	
Burgers	



high	n	

low	n	

A	t-SNE	look	at	HOG	features	





Back	to	classificaJon:	expensive	labels	

•  Human-labeled	data	+	training	à	classificaJon		

Example:	galaxy	zoo	
/	zooniverse:	
	
morphological	
classificaJon	of	
galaxies	
	
Other	example:	
finding	jellyfish	
galaxies	in	TNG	
Yun	et	al.	2019,	
Yun	et	al	in	prep.	



Few	labels,	costly	to	label	data	

•  AcJve	learning:	
the	program	
chooses	which	
data	to	learn	from	

•  So	you	need	less	
hand-labeled	data	

•  Data	is	labeled	
where	most	
needed	



An	acJve	learning	toy	example	
•  A	parJcle	moves	in	a	1-D	potenJal	+	noise	
•  IniJal	condiJons	x0,	x0’,	evolved	for	Jme	t	
•  Train	a	ML	model	to	predict	x	=	x(x0,	x0’,	t)	



The	model	learns	`physics’	

•  The	model	is	trained	only	on	couples	
(x0,	x0’,	t)		;		x		and	never	gets	any	direct	informaJon	on	
the	potenJal	

•  Why	do	this?	We	already	have	enough	students	to	
teach	physics	to...	

•  The	point	is:	which	model	will	learn	faster	(i.e.	
require	less	training	data):	
– one	that	picks	its	own	samples	(acJve	learner)	
– one	that		trains	on	random	samples	(passive	learner)	



AcJve	learning	VS	passive	learning	
a	couple	(x0,	x0’,	t)		;		x	
is	one	‘simulaJon’	
	
passive	learner	receives	
1000	couples	
with	(x0,	x0’,	t)	chosen	at	
random	and	x	calculated	
	
acJve	learner	chooses	the	
iniJal	condiJons	(x0,	x0’,	t)		
on	which	it	has	more	
doubts,	calculates	x	
	
ACTIVE	LEARNER	REACHES	
THE	SAME	ERROR	(MSE)	AS	
A	PASSIVE	LEARNER	WITH	
HALF	AS	MANY	
SIMULATIONS	



AcJve	learners	run	informaJve	simulaJons	

How	much	do	you	learn	about	
the	dynamics	by	placing	a	
parJcle	at	rest	at	the	bo]om	
of	the	potenJal	well?	
	
Not	much...	
	
So	the	acJve	learner		
undersamples	this	region	
(hole	in	the	donut)	
	
AcJve	learners	do	not	waste	
labelling	effort	on	
uninformaJve	regions	of	
parameter	space	
	
How	to	accomplish	this?	



How	to	pick	what	to	study	

•  First	something	at	random	(e.g.	10		(x0,	x0’,	t)	;	x	couples)	
•  On	this,	train	two	different	models	
•  Generate	a	few	candidate	(x0,	x0’,	t)	at	random	
•  Predict	x1	and	x2	with	the	two	models	
•  Query	the	(x0,	x0’,	t)	for	which	the	two	predicJons	differ	
most	strongly	

•  ‘Query	by	commiPee’	– there	are	other	schemes	as	well	

	

Two	students	prepare	for	an	exam	together	by	solving	pracJce	tests.	
They	do	not	know	the	actual	soluJons,	but	they	know	whether	their	two	soluJons	match.	
They	study	again	the	topics	where	the	soluJons	do	not	match.		



QuesJons?	
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