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ML: what is it?

Astronomical data

Points in some
high-
dimensional
space

Without labels

With labels
Clustering

Supervised
classification
or regression

Dimensionality
reduction



Finding segregated subsystems of
stellar-mass black holes in globular clusters

A few BHs in globular clusters were spotted observationally:
M?22 (Strader et al. 2012); M62 (Chomiuk et al. 2013);
47 Tuc (Miller-Jones et al. 2015; Bahramian et al. 2017)
M10 (Shishkovsky et al. 2018); NGC 3201 Giesers et al. (2018)

Globular clusters produce thousands of BH:
how many are retained?

They have dynamical effects and may merge and
produce gravitational waves




Classification problem with

numeric features

e Half-Light Radius

e Central Surface
Brightness

* Central Velocity
Dispersion

* Total Luminosity
* Relaxation Time

e Core Radius

Low-dimensional
feature space,
observed in actual
globular clusters
(e.g. Harris 1996),
easy to extract
from simulations

~ 2000 state-of-
the-art dynamical
simulations from
MOCCA Survey |
(Askar et al. 2017)
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Classification problem

Retains a

0/ BH subsystem |
By
Machine ) |

e

model A.

Does not

Metrics: precision (orange fishes caught / total caught fishes);
recall (orange fishes caught / total orange fishes); F-score harmonic mean of precision and recall



Simple tree models perform well

Gradient Boosted Tree |--|
Decision Tree
Support Vector Machine l—-—l
K Nearest Neighbors I-—_—l
Naive Bayes I-!ﬂ——'

0.2 0.4 0.6 0.8 1.0

Figure 4. Comparison of each classifiers’ f-score with 15-fold stratified CV
testing. An f-score of 1.0 is the best possible, 0.0 is the worst.

The score is affected by how well the classifier can find all the BH

subsystems and whether the identifications are false-positives.



Decision tree model




Physical interpretation

I .
Hosts/Total | | Hosts/Tata First few branches of the learned tree

First split is on core radius: black hole
no subsystem hosts have large cores due
to dynamical heating

yes

L>2.7E5 Lg

Second split on total luminosity: big
clusters produce more black holes,
have higher retention due to higher
escape velocity

yes no




Comparison with real GCs

Table 4. Predictions from the Harris (1996, updated 2010) and
Baumgardt & Hilker (2018) datasets using the gradient boosted
decision tree classifier. Entires where BHS presence was classified
positively are shown. The BHS column represents the classifier
trained on all simulation data whereas Fallback represents train-
ing on models where mass fallback was enabled and BH natal

kicks were lower.

Cluster Name

BHS
(Harris)

Fallback BHS Fallback
(Harris) (B&H) (B&H)

IC 4499 *

NGC 288*

NGC 3201 *

NGC 4372 *¢

NGC 4590 (M68)
NGC 4833 *f

NGC 5139 (w Cen)
NGC 5272 (M3) *
NGC 5286

NGC 5466 *

NGC 5897 *t

NGC 5904 (M5)
NGC 5927

NGC 5986 *f

NGC 6101 *f
NGC 6139 1

NGC 6144 *f

NGC 6205 (M13) *
NGC 6218 (M12)
NGC 6254 (M10)
NGC 6266 (M62)
NGC 6273 (M19) t
NGC 6287 1

NGC 6304 1

NGC 6316 t

NGC 6333 (M9) t
NGC 6356 t
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Green row = predicted BH subsystem host

by all models e.g. NGC 288, M10

Results compare well with other methods

(Askar et al. 2019 marked with *)

NGC 6362 *

NGC 6380 1

NGC 6388

NGC 6401 *

NGC 6402 (M14) t
NGC 6426 *t

NGC 6440 1

NGC 6496 *t

NGC 6517 1

NGC 6539 (GCL 85)
NGC 6553

NGC 6569 *t

NGC 6584 *t

NGC 6656 (M22) *
NGC 6712 *

NGC 6723 *f

NGC 6760 1

NGC 6779 (M56) *
NGC 6809 (M55) *
NGC 6934 *

NGC 6981 (M72) *
NGC 7078 (M15)
NGCT7089 (M2)
Palll *f

Terzanb T
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Now some unsupervised ML

Astronomical data

Points in some

high-
dimensional
space
Without labels
With labels
Clustering
Supervised

Dimensionality

classification .
reduction

or regression



What can we do without labels

* Reduce data-points to fewer representative
data-points (finding groups in data; clustering)

— does k-means ring a bell?

* Reduce coordinates/dimensions to fewer
representative coordinates (dimensionality
reduction)

— You all know PCA, right? nonlinear version of it

reduce rows VS reduce columns



Example: chemical tagging

* Field stars may come from disrupted open clusters

* |f each OC had distinctive chemistry, we can use abundances as a
fingerprint of the parent cluster

Si CAT1 SC2 T TI2 Vi CR1 FET FE2 col NI Y2

Parallel coordinate display of 12 abundances of 330 main sequence stars from GAIA-ESO
(Gilmore et al. 2012). Stars selected in real open cluster fields (courtesy A. Bragaglia),
parent open cluster color-coded; can we recover them?



12D -> 2D

* |f we could represent this 12D space on a plane...
* PCA and keep the first two components? Nah...
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* |f we could represent this 12D space on a plane...
* PCA and keep the first two components? Nah...

4'.'."‘0.
KUK e
B e Y
Sy
%% Laurens van
’ . der Maaten
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Woas t-distributed stochastic

neighbor embedding



t-SNE

Local (short) distances matter more than long
distances

* Place points in the plane to minimize a loss
function that keeps nearby points nearby

exp(—||x; — x;[|?/20?) Pjli + Pi)j | similarity in
Pii — high dimension
S i exp(—||xi — xi[[2/20%) | ©Y 2N

bjli =

I+ ly; —y;l1%)!

qij = —
0. >ra(L+llyr —wll?)!
ij
Small p;
Pij (faraway
P| |Q Zpl} log T points)
i#£] do not affect

the loss



Dimensionality reduction

o Pleiades
o NGC2243
A Br2s
NGC2547
M67
1C2602
NGC6253
Blanco1
lam_Ori
NGC2232
NGC2264
Br31

Br36
NGC2451
Melotte71
NGC2420
NGC2516
gamma2_Vel
IC2391
Trumpleri4
Cha_l
NGC3532
Trumpler20
NGC4815
Pismis18
NGC6005
Trumpler23
NGC6067
Rho_Oph
NGC6259
IC4665
Rup134
NGC6530
NGC6633
NGC6705
Brg1

Brd4
NGC6802
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12 dimensional space represented on the plane with t-SNE






Learning the spectral index of
turbulence of simulated molecular
clouds from projected density maps

Turbulence in molecular clouds modulates
star formation, physics still not fully
understood (EImegreen & Scalo 2004,
Hennebelle & Falgarone 2012)

Velocity power spectrum of turbulence can be
measured directly through e.g. line-of-sight
velocity (Koch 2019)



Question

 Can we measure the turbulence index of
simulated turbulent gas from density maps?

* |n particular discriminate between
Kolmogorov P (k) = k11/3 and Burgers P (k) =
k4 spectra




Simulations
1000 simulations of turbulent gas with RAMSES?2
[Teyssier 2002] AMR code

10x10x10 pc box, initially uniform density gas
(6.77x107?’g/cm?), total mass of 10*M_, .

Gas kept isothermal at temperature T=10K

Injected a divergence free, turbulent, supersonic (Mach
1.41) velocity field with spectrum index n=11/3 or 4

Evolved for 0.5 Myr, solving Euler’s equation with a
Lax-Friedrichs Riemann Solver, periodic boundaries
without self-gravity and magnetic fields



Train/test/holdout split

500 sims w. Kolmogorov index, 500 w. Burgers

400+400 build the train set -> 3 projections (x,y,z)
X 4 flip/flop X 4-way cut = 38400 training images

50+50 in the test set = 4800 test images
50+50 never looked at (holdout set) = 4800 images




lmages

e 250x250 pixels, grayscale; each image
corresponds to % of the box, seen in
projection along an axis (x,y,z)

 Luminosity encodes log column density

|

Kolmogorov Burgers



Deep learning setup

* Keras on top of Tensorflow on workstation
with a Titan V GPU

* Four convolutional layers (with max
pooling) + three dense layers, RELU act.

* Dropout regularization

Input layer

Prediction

— 49 Gyr

(12.2 - 49)2

Error

Deep layers
dw, Adjust weights

(backpropagation)




Performance on holdout set

Kolmogorov

2113 287

Burgers

812 1588
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Testing on different indices

We ran 1000 more simulations with turbulence index that ranges continously from 3 (left)
to 4.5 (right). What will the net predict?




Predictions

Predicted
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Predicted
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. Ih II ‘l ]
| I l | | I | |
4.2 4.4

3.0 3.2 3.4 3.6 3.8 4.0

40 60

Counts

20
|

Turbulence index



A t-SNE look at HOG features






Back to classification: expensive labels

+ training > classification

( %% ) Galaxy Zoo @ ABOUT  CLASSIFY

Example:
/ zooniverse:

TASK TUTORIAL .
morphological
Is the galaxy simply smooth and rounded, wit oo .
osgnotadiskr classification of
E h galaxies
;’© Features or Disk Other example:

finding jellyfish

oo At galaxies in TNG
Yun et al. 2019,

NEED SOME HELP WITH THIS TASK? Yun et aI in prep.




Few labels, costly to label data

* Active learning:
the program
chooses which
data to learn from

* So you need less
hand-labeled data

e Datais labeled
where most
needed

Regular grid

Latin hypercube

Random
o



An active learning toy example

* A particle moves in a 1-D potential + noise
* |nitial conditions x,, x.’, evolved for time t
* Train a ML model to predict x = x(x,, x,’, t)




The model learns physics’

* The model is trained only on couples

(., X,', T) ; x and never gets any direct information on
the potential

 Why do this? We already have enough students to
teach physics to...

* The point is: which model will learn faster (i.e.
require less training data):

— one that picks its own samples (active learner)
— one that trains on random samples (passive learner)



Performance

Active learning VS passive learning

1.5

1.0

0.5

Number of simulations run

a couple (x,, x,/, t) ; x
is one ‘simulation’

passive learner receives
1000 couples

with (x,, x,’, t) chosen at
random and x calculated

active learner chooses the
initial conditions (x,, x,’, t)
on which it has more
doubts, calculates x

ACTIVE LEARNER REACHES
THE SAME ERROR (MSE) AS
A PASSIVE LEARNER WITH
HALF AS MANY
SIMULATIONS



Active learners run informative simulations

R How much do you learn about
'ﬂﬁ‘,jg' B o the dynamics by placing a

T particle at rest at the bottom
of the potential well?

x0

o Not much...

‘;1.% So the active learner
= undersamples this region
-2 (hole in the donut)

"-..?,"‘ A L .

2 \s,,‘:;v*:.‘:'»& . Active learners do not waste
o e B .

SRR A I labelling effort on

I T O N Y
. “’,I-,.-'l-,'.f‘&#'\ .

GRS | o uninformative regions of
parameter space
o X ) ]
How to accomplish this?




How to pick what to study

Two students prepare for an exam together by solving practice tests.
They do not know the actual solutions, but they know whether their two solutions match.

They study again the topics where the solutions do not match.

’

* First something at random (e.g. 10 (x,, x,, t) ; x couples)
* On this, train two different models

 Generate a few candidate (x., x,’, t) at random

* Predict x, and x, with the two models

 Query the (x,, x,, t) for which the two predictions differ
most strongly

* ‘Query by committee’ - there are other schemes as well



Questions?
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