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Outline

1. Kinetic and radiative power from accretion

2. Signature of outflows in the photon output 

4. Difference between BH and NS outflows? 

3. Interaction of outflows with surrounding gas
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Accretion jets, outflows

Herbig-Haro source 34 in Orion  (HST [SII] image; Antoniucci et al 2014)

M87 jet  (HST image; Perlman et al 2001)
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Accretion jets, outflows

Protostars (Herbig Haro objects)

White dwarfs

Neutron stars

Stellar-mass BHs

Gamma-ray bursts

Supermassive BHs in: Tidal disruption events

AGN

Quasars

Jet produced at all scales (compact object + accretion)

Jet velocity ~ escape velocity from the compact object

In this talk I will focus on the super-critical regime
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Definitions

Critical mass accretion rate (mdot = 1)
rate at which L = LEdd for standard efficient accretion

Super-critical accretion

when accretion rate mdot > 1

luminosity at which radiation pressure force = gravitational force

Eddington limit

• Super-Eddington luminosity

• Jets, outflows

• Inefficient accretion (photon trapping)

may result in 
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Open problems of super-critical accretion

2. Jets in the super-Eddington regime

• Powered by accretion or by BH spin?

• Steady or flaring?

• Co-existing with slower, denser winds?

3. Jets/ISM interaction 

ULX bubbles, hot spots, optical nebular lines

• Temperature, geometry, wind emission & abs lines

• Difference between magnetic/non-magnetic accretors

1. Inflow structure near ISCO 



LX ~ 1E39 – a few E40 erg/s

MHD simulations of accreting stellar-mass BHs

Super-critical

(“ultraluminous”)

High/soft Low/hard

(O
h
s
u
g
a

&
 M

in
e
s
h
ig

e
2
0
1
1
)

Jets (?) No jets Jets



77

Theoretical models always predict jets

(Narayan, Sadowski & Soria 2017, MNRAS)
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polar funnel

Bulk speed 

of the outflow

Jets in the super-critical regime? 
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Jets in the super-critical regime? 

Observations still inconclusive
Evidence of jets in some sources but not in others

Often difficult to prove super-critical accretion

Testing jet models is important for understanding

Most important parameters remain untested

PJet / LX PJet / (Mdot c2)

• Early growth of nuclear BHs

• Feedback and removal of gas from galaxies

• BH mass range in X-ray binaries

• Tidal disruption events
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Jet power can be > radiative power 

Sample of jet-dominated blazars (Ghisellini et al 2014)
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Jet power can be > radiative power 

But blazars are mostly sub-Eddington (Ghisellini et al 2014)

What happens in the super-Eddington regime?
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How to test jets in the super-Edd regime? 

Some tidal disruption events

Ultraluminous X-ray sources (ULXs)
= highest luminosity class of X-ray binaries
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How to detect jets near a BH or NS 

1. Core (flat-spectrum) radio emission

2. Relativistic Doppler-shifted (optical/X-ray) lines

Standard technique in Galactic X-ray binaries

Two possible ways to detect a jet near its launching radius 

Discovery of jets in Galactic BH SS433 and in M81 ULX

Scaling relations between LR and LX
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How to detect jets near a BH or NS 

Steady jets too faint to be detected in other galaxies

S5GHz ~ 1 mJy at 5 Mpc requires SKA  

Core radio emission

(Tudor et al 2017)
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How to detect jets near a BH or NS 

Flaring jets can be detected in other galaxies

S5GHz ~ 100 mJy at 5 Mpc VLA is enough

Core radio emission

(Tudor et al 2017)
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Radio emission from flaring ULX jets 

L5GHz / Ldisk ~ 10-8
L5GHz / Ldisk ~ 10-6 – 10-5

(steady jet) (flaring jet)

(steady)

(flaring)
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HoII X-1

(Falcke & Biermann 1996 + Cseh et al 2015)

M31 X-1
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Flaring jet in Holmberg II X-1 (Cseh et al 2014,2015)

LX ~ 4 x 1039 erg/s

PJ ~ 2 x 1039 erg/s

Steep radio spectrum

LR ~ 1 x 1034 erg/s

Radio emission from flaring ULX jets 



1717

Outflow signatures on ULX spectra

(adapted from Pinto et al 2017) 

jet
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N1313 X-1

Ho IX X-1

Ho II X-1

N55 X-1

N6946 X-1

N5408 X-1

NGC55 X-1

(Middleton et al 2015)

(Pinto et al 2017)

Outflow signatures on ULX spectra
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(Pinto et al 2017)

120-ks XMM-Newton/RGS spectrum of the ULX in NGC 55

Outflow signatures on ULX spectra
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Outflow signatures 

on ULX spectra

NGC1313 X-1

350-ks RGS spectrum
(Pinto et al 2016)

NGC5408 X-1

650-ks RGS spectrum
(Pinto et al 2016)

Emission lines

from slow-moving gas

v ~ 0.01—0.1 c

Absorption lines

from fast-moving gas

v ~ 0.1—0.2 c
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Relativistic jet lines at v = 0.17c in M81 ULS (Liu et al 2015)

Outflow signatures on ULX spectra
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Jet signature in the pulsar ULX P13 
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Jet signature in the pulsar ULX P13 

Strange line at 4.5 keV 

(redshifted Fe Ka line?)

Chandra spectrum Aug 2011 

Chandra spectrum Dec 2011

(Soria, Motch & Pakull in prep)
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Jet signature in the pulsar ULX P13 

Strange line at 4.5 keV 

(redshifted Fe Ka line?)

Merged Chandra spectrum

Aug + Dec 2011 

(Soria, Motch & Pakull in prep)
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Spectral hardness

function of viewing angle 
(Sutton et al 2013)

ULX unification model 

Downscattering of X-ray

photons through the wind

Soft
Hard

Supersoft



Super-Eddington BH 

with optically thin wind

Super-Eddington BH 

with optically thick wind

X-ray photons 

scattered by the wind

X-ray photons 

thermalized by the wind

ULS
ULX



Rbb ~ (Tbb)
-2 as expected from a ULS photosphere
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Evidence of jets/winds near the compact object

(d ~ 10—10,000 km)

Recap so far 

PART 1

Next: PART 2

Evidence of jets/winds at large distances

(d ~ 100 pc)
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Standard bubble theory (Weaver et al 1977)

Outflow / ISM interaction 
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Overpressured cocoon (Begelman & Cioffi 1989)

Outflow / ISM interaction 
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Outflow / ISM interaction 
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Outflow / ISM interaction 

PJ ~ 0.1 Mdot c2 ~ few 1039 erg/s

Duration of super-critical phase

t ~ few 105 yr

Total energy injected into the ISM

E ~ PJ t ~ 1052 erg

ULX jet bubbles ~ 10 x more energetic than SNRs
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ULX bubbles (Pakull & Mirioni 2001) 

size ~ 300 x 470 pc

size ~ 300 x 200 pc



[O III]  5007

9 GHzHa

Galactic ULX bubble SS433

VLA image, Dubner et al 1998



Some jets are easy to identify

Jet-inflated bubble with hot spots

PJ ~ 1040 erg/s  > (apparent) LX

HST

Chandra

ATCA 5.5 GHz

Pakull, Soria & Motch

(2010, Nature)

Soria et al (2010, MNRAS)

diameter ~ 270 pc

L5GHz (bubble) ~ 1035 erg/s  

S26 in NGC 7793



[O III]  5007

ASA 2015

9 GHzHa

S26 microquasar in NGC 7793

Age ~ 300,000 yrs, v ~ 270 km/sShock-ionized bubble



[O III]  5007

9 GHzHa

S26 microquasar in NGC 7793

Chandra

X-ray contours



HST close-up view 

of the southern lobe

Ha filter

BH

Radio hot spot

X-ray hot spot Pjet ~ 1E40 erg/s



Sydney workshop 2015
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NGC 5585 X-1HST WFC3 UVI bands

(Soria, Motch

& Pakull in prep)
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NGC 5585 X-1HST WFC3 Ha

(Soria, Motch

& Pakull in prep)
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NGC 5585 X-1VLA 1.5 GHz

(Soria, Motch

& Pakull in prep)
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NGC 5585 X-1VLA 1.5 GHz
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Mechanical power in shock-ionized bubbles

Similar to SNRs but larger (100—300 pc) and older

Shock velocity ~ line FWHM ~ 150—250 km/s

Two complementary techniques  (M W Pakull et al)

a)  Measure bubble size (R) and expansion velocity (V)

𝑷𝑱~ 𝒏𝑹
𝟐𝑽𝟑

b)  Measure flux of diagnostic lines (Ha, Hb, [Fe II] 1.64mm)

PJ scales with optical/IR line flux
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Hb and [Fe II] are good proxies for jet power

(Soria et al 2014, 

using Mappings III, 

Allen et al 2008)

L[Fe II] 1.64 ~ a few 10-4 Pjet

LHb ~ 2 x 10-3 Pjet

[Fe II] traces gas with ne ~ 103—105 cm-3, Te ~ 6,000—15,000 K



NGC 300  S10



NGC 300 S10

Jet with multiple 

X-ray knots

X-ray, Ha and radio detection

(Urquhart, Soria, Pakull et al 2019)

X-ray, Ha

and radio detection

ATCA

L5GHz (jet) ~ 1034 erg/s  



ATCA

Jet with multiple 

X-ray knots

NGC 300 S10

L5GHz (jet) ~ 1034 erg/s  

X-ray, Ha

and radio detection

(Urquhart, Soria, Pakull et al 2019)
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OverviewM51  Ha

ULX-1

Jet-inflated bubble in M51
(Urquhart, Soria, et al, 2018)

PJ ~ 2 x 1039 erg/s

L5GHz ~ 2 x 1034 erg/s  
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SNR or microquasar bubble?

(Beuchert et al in prep.)

(Bruursema et al 2014)

MF16 in NGC 6946
Strongest [Fe II] source in NGC 6946

is in fact a microquasar jet

[Fe II] H J

VLA radio contours

HST optical image



M83
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M83 MQ1: jet with super-Eddington power
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PJet ~ 
1040 erg/s



M83
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Ha

Red = Ha

Green = [S II]

Blue = [O III]

[Fe II] 1.64mm

9 GHz

Ha

(Soria, Long, Blair et al 2019 submitted)
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Putting together our findings so far 

✓Several ULXs with jets (Pkin ~ Prad > 1039 erg/s)

✓Several ULXs with fast and/or dense outflows

✓Typical duration of the super-critical phase ~ 105 yr

▪ Other bright ULXs have no evidence of jets

▪ Several ULXs have high inclination but hard spectra

▪ Hard and soft ULXs have similar luminosity range

Problems for ULX unification model
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Some ULXs have 

high inclination

but hard X-ray spectra

Problems with ULX unification model 

Some ULXs have 

stronger jets/outflows

at same accretion rate
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An additional parameter: NS vs BH 

Strongly magnetized vs 

weakly-magnetized accretion

▪ Weaker jets in NSs for same accretion power?

▪ Different jet launching mechanism in BHs and NSs?

▪ Can NSs exceed Edd luminosity better than BHs? 



5858

First ULX bubble in a NS (Belfiore et al 2019)

NGC 5907 ULX
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Accretion onto NSs

Strong magnetic field

(for mdot > 1, B > 1012 G)

Weak magnetic field

(for mdot > 1, B <~ 1012 G)

Polar accretion columns

No disk outflows/funnel? 

Disk accretion, strong outflows

BH = NS
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Gas density

Outflow speed 

NS 

NS 

BH

BH

(Ohsuga 2007)

Weak-field NSs

similar to BHs



6161

No disk outflow if inner disk is missing

Magnetospheric radius > outflow launching radius



6262

No disk outflow if inner disk is missing

Magnetospheric radius > outflow launching radius

NSs with B ~ 1013—1014 G can be hard-state ULXs
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Radio loud and radio quiet bubbles

Similar huge bubbles for NGC 1313 X-2 and NGC 5585 X-1

Similar Ha luminosity ~ 10^{37} erg/s 

NGC 5585 X-1 at least 100 times more radio luminous
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SNRs

Radio loud and radio quiet bubbles

ULX bubbles

Radio luminosity determined by many physical parameters

(not a simple function of jet power)

Radio SNRs fade with age, ULX radio bubbles get brighter
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NGC1313 X-2: another NS bubble? 

(Sathyaprakash et al 2019)
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Conclusions

Both NS and BH ULXs produce strong outflows

Jets/outflows are important in super-critical regime
(ULX – quasar comparisons)

Difference between strongly and weakly magnetized NSs?

Jet power = accretion power or Blandford-Znajek?

Are NS bubbles less radio luminous?
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NGC 5408 X-2: BH + LBV star? 

Chandra X-ray image (Pakull et al, in prep)

VLA 4.9 GHz contours (Lang et al 2007)
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NGC 5408 X-2: BH + LBV star? 

Very broad (HWZI ~ 5000 km/s) and very bright (EW ~ 2000 Ang) Ha emission

Strong photo-ionized He II 4686

Outflow from super-Eddington BH in a Common Envelope? (Pakull et al in prep)



Sydney workshop 2015

NGC 5585 X-1



7070

SS433: the most powerful BH in our Galaxy?



7171

SS433: the most powerful BH in our Galaxy?

Very Long Baseline Interferometry images of the precessing jet



[O III]  5007

9 GHzHa

Galactic ULX bubble SS433
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SS433: the most powerful BH in our Galaxy?



74Jets in stellar-mass BHs (MAS – Aug 2016) 74

SS433: the most powerful BH in our Galaxy?


