IASF-INAF contributions on

Isolated Neutron Stars

Staff: Patrizia Caraveo, Sandro Mereghetti
New Staff: Alberto Pellizzoni
Temp.Pos.: Andrea De Luca, Andrea Tiengo
PhD. Stud.: Paolo Esposito, Fabio Mattana
Silvia Entradi, Martino Marelli
Ass.: G. Bignami
A NS is a source of

- Thermal emission (somewhat PULSED) from its (rotating) surface tiny radius, very high T optical/UV, soft X-ray

- Non thermal emission (strongly PULSED) from its (rotating) magnetosphere radio, optical, X-ray, γ-ray

- Non thermal emission (NON pulsed) from its surroundings radio, optical, IR, X-ray
NSs as X-ray emitters

~ 40 Classical NSs
~ 20 msec PSR

- Pulsed emission from virtually all objects
- Pulsed emission from 5 objects
- Pulsed emission from 2 objects + 1 outliers?

7 INSs
7 CCOs

• AXP, SGR
Our contributions

- Phase resolved spectroscopy (4)
- Search for new sources
- Binary system
- Detection of pulsation from RXJ1856.5-3754
- Detailed studies of 1E1207 and 1E1613, more CCOs
- 40 Classical NSs
- ~20 msec PSR
- 7 INSs
- 7 CCOs +
- AXP, SGR
Phase-resolved spectroscopy

Applied to PSRs with composite spectra

P.A. Caraveo, A. DeLuca, S.Mereghetti, A. Pellizzoni, G.F. Bignami
Phase resolved spectroscopy of Geminga shows rotating hot spot(s)
Science, 305, 376, 2004

A. DeLuca, **P.A. Caraveo**, S.Mereghetti, M. Negroni, G.F. Bignami
On the polar caps of the three musketeers
ApJ 623, 1051, 2005

A. Manzali, A. De Luca, P.A. Caraveo
Phase Resolved Spectroscopy of the Vela Pulsar with XMM-Newton
ApJ. 669, 570, 2007
4 similar objects

Unfolded EPIC spectra
and a somewhat different Vela
and Vela
PSR J1357-6429

We discovered its X-ray emission using XMM and CXO data.

- Very young: $P/2\dot{P} = 7.3$ kyr
 (9th youngest Galactic radio pulsar)
- Thermal emission
- Some evidence ($\sim 3\sigma$) of PWN
- Energetic ($E_{\text{dot}} \sim 3 \times 10^{36}$ erg s$^{-1}$) and nearby (2.5 kpc).

Hard γ-ray (>100 MeV) counterpart? To be observed with AGILE ...

Positionally compatible with the new gamma-ray source HESS J1357-645.
RX J0002+6246: a fake NS

Our analysis of the XMM data.

Position consistent with that of a bright (non-degenerate) star present in various optical/IR catalogues.

Absence of X-ray pulsation and no associated SNR.

X-ray spectrum well described by an optically thin plasma model with kT typical of stellar atmospheres.

Optical/IR colours and X-ray flux consistent with a nearby (0.2 kpc) F7-type main-sequence star.

⇒ RXJ is not a NS but rather a star!
Double neutron star system 0737-3039

Orbital p.: 2.4 h
eccentricity=0.09
Separation 3 sec.

PSR A: P=22.7 ms
$E_{\text{ROT}}=6 \times 10^{33}$ erg/s,
$\tau=210$ Myr
$B=6.3 \times 10^9$ G
1.337 M_{\odot}

PSR B: P=2.7 s
$E_{\text{ROT}}=2 \times 10^{30}$ erg/s
$\tau=50$ Myr
$B=1.2 \times 10^{12}$ G
1.25 M_{\odot}
Pellizzoni et al., submitted (XMM/EPIC, 250 ks, 5000 photons)

PSR A
PSR B (detected around ascending node of the orbit)
PSR B (detected around ascending node of the orbit)

But Edot is not enough
Pairs from A’s wind flow into the open field line region of B and lose energy via curvature radiation and IC γ-rays heating polar cap region.
INSs

No radio em.
Faint optical em.
Thermal spectra
Low T
Whole surface
Shallow puls.

Pulsed fraction: ~1.2%
CCOs

No radio emission
No optical emission
Thermal spectra
Small R, high T
EPIC view of 1E1207.4-5209 : 260 ksec
Pn data 208,000 photons

Bignami et al, Nature 2003
After a long debate, Gotthelf et al 2007 have shown that P is very stable.

Thus, $B < 3.5 \times 10^{11}$

$\dot{E} < 1.5 \times 10^{32} \Rightarrow L_x = 2 \times 10^{33}$

Fallback accretion???
CCOs as a class: slow rotators, low B neutron stars?

Fallback accretion fuels X-ray em. but hampers radio one.
The phenomenology of 1E1613

Genetically tied to a 2 ky-old SNR

Unique phenomenology

A young binary?

A peculiar INS?

De Luca et al, Science 313, 814, 2006
On the nature of 1E1613

A young binary?
A peculiar INS?
Binary system formation?
Luminosity/variability from accretion?
Analog of a Polar featuring a magnetar?
Spin down by propeller effect on debris disc
Unique phenomenology points to "braked magnetar"
Spun down by fallback
IR data allow for M6-M8 companion
NSs as Optical emitters

9 Classical NSs
1 msec
4 INSs
0 CCOs
Our contribution (over 10 y.)

- 9 Classical NSs
- 1 msec
- 4 INSs
- 0 CCOs

Discovery of 4 counterparts
Meas. of 5 PMs
Meas. of 2 parallaxes

Search for count.
1E1207
1E1613
Vela Jr.
HST PSRs gallery

PM & par

PM & par

PM & par

Geminga

PM & par

PM

PM

PM

PM

PM

PM

PM

Geminga

0540-69

1055-57

0656+16
Elusive CCOs

Vela Junior

1E1207

1E 1613
A varying PWN for 0540-69

A. De Luca, R.P. Mignani, P.A. Caraveo, G.F. Bignami

HST multi-epoch imaging of the PSR 0540-69 system unveils a highly dynamic synchrotron nebula

Back to the future

Agile and Glast will discover many Geminga-like sources

We plan to lead the effort to identify them.

(G. Novara and F. Senziani)