La cura dimagrante della Nana Cicciona

Sandro Mereghetti (IASF-Milano)

Astrosiesta 11 gennaio 2018

In collaboration with

S. Popov, S. Blinnikov, A. Kuranov (Sternberg Astronomical Institute, Moscow) L.Yungelson (Russian Academy of Science, Moscow)

1970: HD 49798 is a spectroscopic binary ...but its companion is invisible in optical/UV

HD 49798

The brightest hot subdwarf (sdO)

B=8 mag

single-lined spectroscopic binary (P_{ORB} = 1.55 days) Thackeray 1970 Kudritzky et al. 1978 Hamann et al. 1981 Bruhweiler et al. 1981 Stickland & Lloyd 1984

Companion invisible in optical / UV data

1997: discovery of very soft, pulsed X-ray emission with ROSAT

Israel et al. 1997, ApJ

P=13.2 s
the companion is a
Neutron Star or a White
Dwarf

Poorly constrained X-ray spectrum → large uncertainty on X-ray luminosity $10^{32} - 10^{38}$ erg/s

2008: Long observation with XMM-Newton good spectrum and dynamical measure of the masses

Mereghetti et al. 2009, Science

Blackbody + Power law $L_{bol} \sim 2 \cdot 10^{32} \text{ erg/s}$

too small for a NS accreting in the sdO wind!

The companion is a massive White Dwarf

Unique X-ray binary

Possible progenitor of type Ia SN or ms PSR

2016: discovery of spin-up

Mereghetti et al. 2016, MNRAS

Phase connection over ~20 yrs - (ROSAT / XMM-Newton / Swift)

Problems with interpretation: a WD or a NS?

Before Pdot measurements all systems parameters were well explained with an accreting WD.

But the high spin-up rate favors a NS, because, with the observed accretion luminosity, it is difficult to explain such significant Pdot of a WD.

accreted by the compact companion:

$$j = \frac{2\pi \dot{\nu} IGM}{L_X R}$$

Specific angular momentum accreted by the compact
$$j_{WD} = 2.2 \times 10^{19} \left(\frac{L_X}{2 \times 10^{32} \text{ erg s}^{-1}} \right)^{-1} \text{ cm}^2 \text{ s}^{-1}$$

$$j = \frac{2\pi \dot{v} IGM}{L_X R}$$

$$j_{\text{NS}} = 5.5 \times 10^{16} \left(\frac{L_X}{2 \times 10^{32} \text{ erg s}^{-1}}\right)^{-1} \text{ cm}^2 \text{ s}^{-1}$$

It is too large in case of a WD

Problems with interpretation: a WD or a NS?

Also with a NS there are problems:

$$\dot{M} > 2 \times 10^{11} \text{ g s}^{-1}$$

$$\Rightarrow$$
 2 x 10⁷ G < B_{NS} < 3 x 10¹⁰ G (very low)

- ⇒ stability of the spin-up rate for a time period longer than 20 yr
- \Rightarrow $R_{\rm BB} \sim 40 \, (d/650 \, \mathrm{pc}) \, \mathrm{km} > R_{\rm NS}$

A new idea: a contracting white dwarf

Popov, SM, et al. 2017, MNRAS

WD evolutionary code

Blinnikov & Dunina-Barkovskaya 1994

Theoretical WD contraction

Includes

- equation of state
- -Electrons heat conductivity
- -Rate of neutrino losses
- -Coulomb screening in thermonuclear reactions

Resulting cooling curves reproduce well the observed luminosity function and mass distribution of WDs

Agrees with other recent computations

Moment of inertia as a function of WD age

$$I = \frac{8\pi}{3} \int_0^R \rho r^4 dr,$$

Evolution of spin-up rate

$$I_1/I_2 = P_1/P_2.$$
 $\dot{P} = \Delta P/\Delta t = \frac{P}{\Delta t} \left(\frac{I_1}{I_2} - 1\right)$

The observed spin-up rate is that expected for a WD of ~2 million years

WD age of few Myr consistent with evolutionary scenario for the formation of systems like HD 49798, starting from intermediate mass binaries and involving common envelope phases

Time	M_1	M_2	Period	Stage
(Myr)	(M_{\odot})	(M_{\odot})	(days)	
0.0	7.0	6.75	4550.3	ZAMS
48.8	7.06	6.75	4550.3	RG+MS
49.0	7.05	6.75	4551.6	$_{\mathrm{CHB+MS}}$
53.0	6.89	6.75	4621.7	$_{\mathrm{CHB+RG}}$
53.1	6.89	6.75	4623.4	CHB+CHB
55.0	6.84	6.69	4691.9	EAGB+CHB
55.3	6.8	6.69	4657.4	TPAGB+CHB
55.7	5.96	6.84	4101.8	CE
55.7	1.28	1.47	1.48	ONe WD+He∗
64.1	1.28	1.43	1.52	ONe WD+HeG
64.8	1.28	1.42	1.53	CE
64.8	1.28	0.83	0.15	ONe+CO WDs
467.5	1.28	0.83	0.0004	Merger

Conclusion

Accretion torques cannot produce the spin-up rate of the HD 49798 companion if it is a WD

(... and very difficult also if it is a NS)

But the contraction rate (~ 1 cm/yr) of a young (few Myr) WD can easily explain the rapid spin-up rate (70 ns/yr)

If this is the correct explanation, this would be the first observational evidence of the contraction of a young WD (predicted by theory but never observed before)