

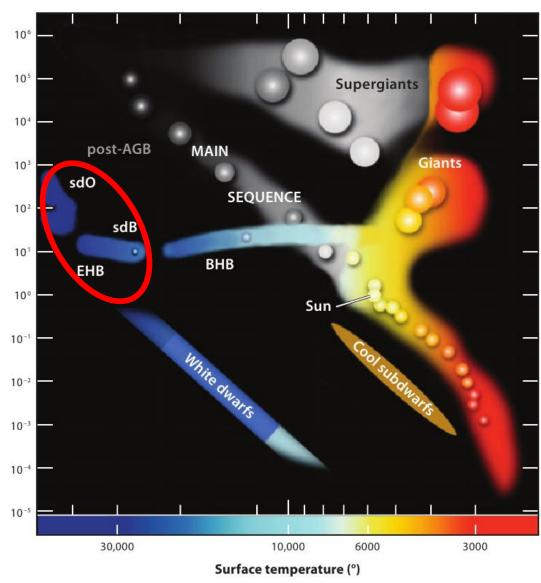


# Hot-subdwarf stars: a new class of X-ray sources...?

#### N. La Palombara

S. Mereghetti, A. Tiengo, P. Esposito



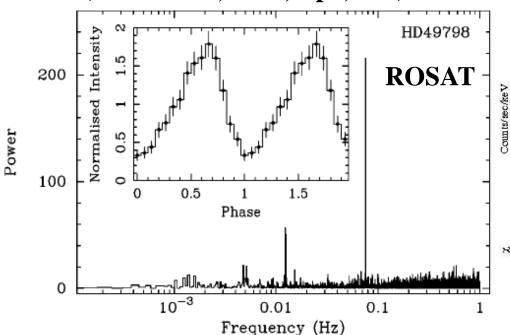



#### **Hot subdwarf stars:**

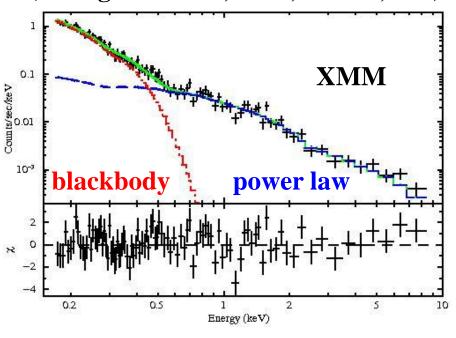
- Evolved low-mass stars with burning He core and thin H envelope (Heber 2009)
- Spectrally classified in: sdO (T > 40,000 K) sdB (T < 40,000 K) (Hirsch et al. 2008)
- Many in close binary systems

possible formation via mass loss through binary evolution

#### Heber 2009, ARAA, 47





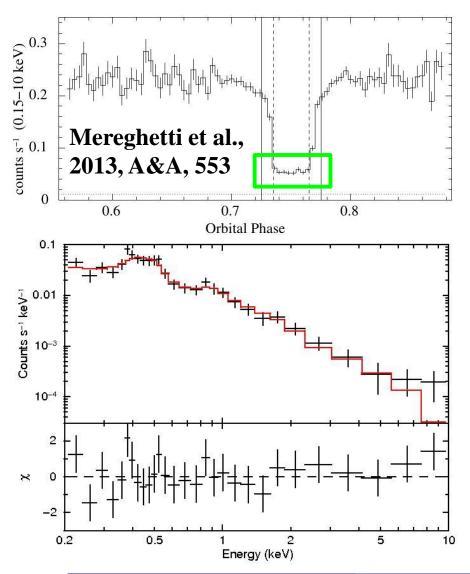




# HD 49798: the first sdO star detected in X-rays

Pulsations discovered with ROSAT (Israel et al., 1997, ApJ, 474)



Spectrum investigated with XMM (Mereghetti et al., 2009, Science, 325)




- Pulsed X-ray emission (P = 13.2 s)
- Soft X-ray spectrum (BB dominated)  $\Rightarrow$  the companion is a WD
- Low X-ray luminosity ( $L_X \sim 10^{32}$  erg/s)





# X-ray emission during WD eclipse



- PL + 2 narrow lines @ 0.43 & 0.5 keV (N VI & N VII)
   OR
- 3 thermal plasma components (kT = 0.14, 0.7 & 5 keV) with proper He & N abundances
- $L_X \simeq 3x10^{30} \text{ erg/s} \Rightarrow L_X/L_{bol} \sim 10^{-7}$ consistent with O-type stars (Nazé 2009)

first detection of intrinsic X-ray emission from a hot subdwarf star





#### The Extreme Helium Star BD +37° 442

**BD** +37° 442

T = 48,000 K

 $L = 25,000 L_{\odot}$ 

 $\log g = 4.0$ 

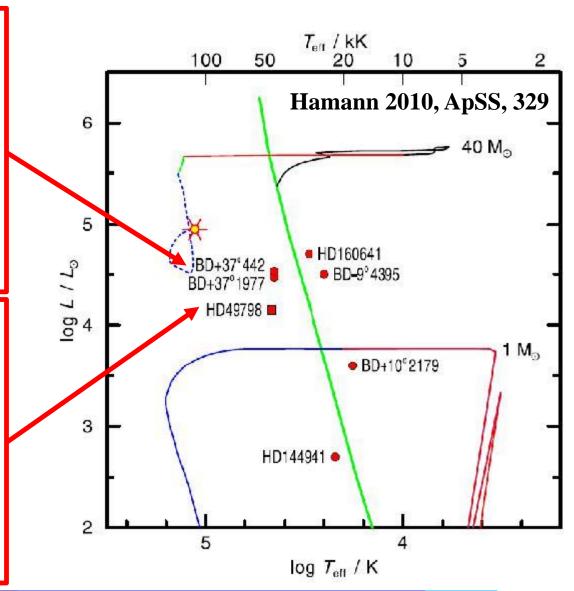
d = 2.0(+0.9/-0.6) kpc

 $\dot{M} = 10^{-8.5} \, M_{\odot} / yr$ 

 $V_{\text{wind, }\infty} = 2,0\bar{0}0 \text{ km/s}$ 

#### **HD 49798**

T = 46,500 K


 $L = 14,000 L_{\odot}$ 

 $\log g = 4.35$ 

 $d = 650 \pm 100 \text{ pc}$ 

 $\dot{M} = 10^{-8.5} \, M_{\odot} / yr$ 

 $V_{\text{wind, }\infty} = 1,350 \text{ km/s}$ 







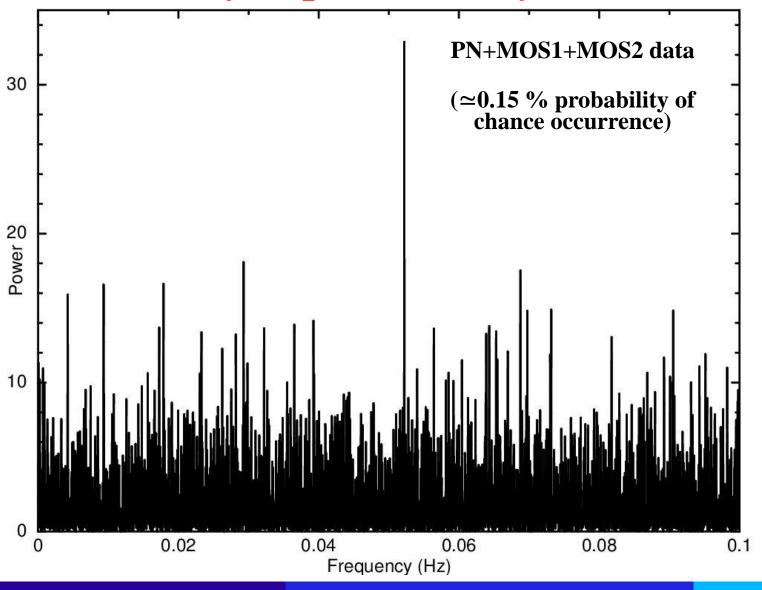
#### The Extreme Helium Star BD +37° 442

Luminous & He-rich sdO star comparable to HD 49798

#### Single star:

- no evidence of normal/compact companion from spectroscopic (Faÿ et al 1973; Kaufman & Theil 1980; Dworetsky et al. 1982) or photometric data (Landolt 1968, 1973)
- no infrared excess (Thejll et al. 1995)

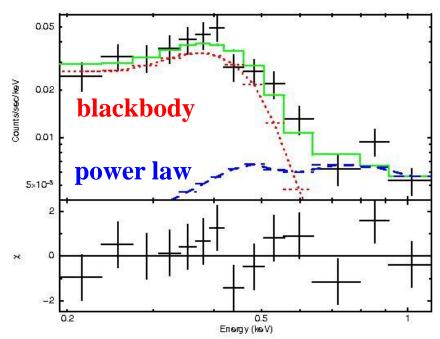
UV spectra: N V and C IV resonance lines with P Cygni-like profiles ⇒ stellar wind (Rossi et al. 1984)



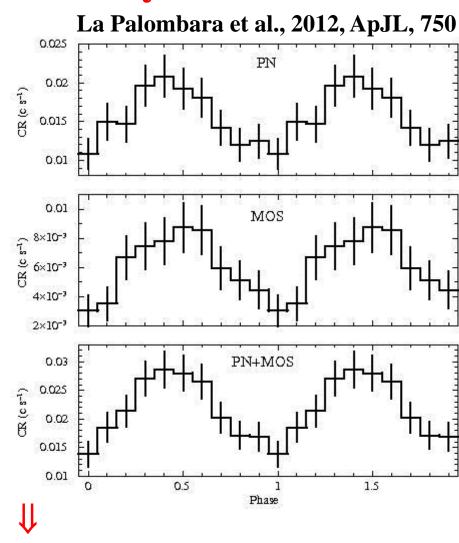

very interesting to investigate X-ray emission from sdO stars






# Discovery of pulsed X-ray emission



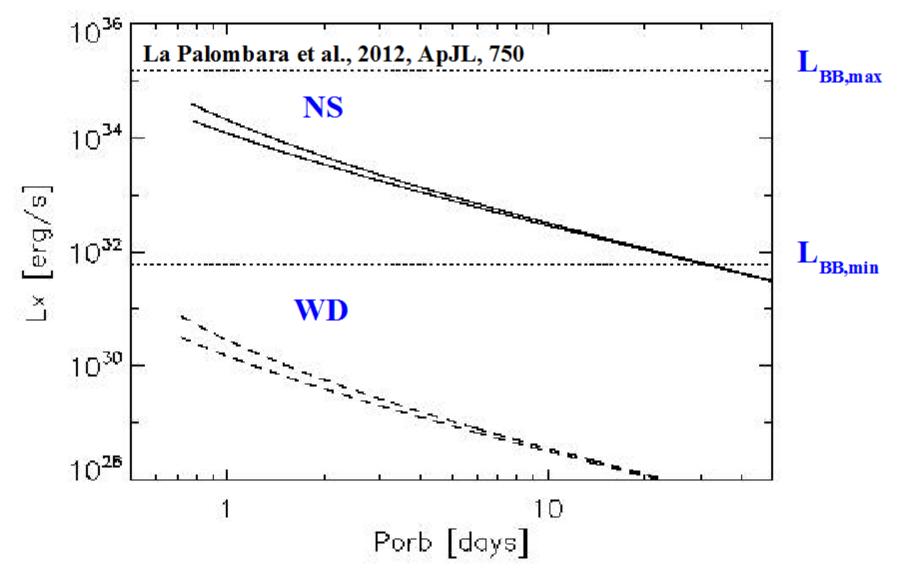





## Discovery of pulsed X-ray emission



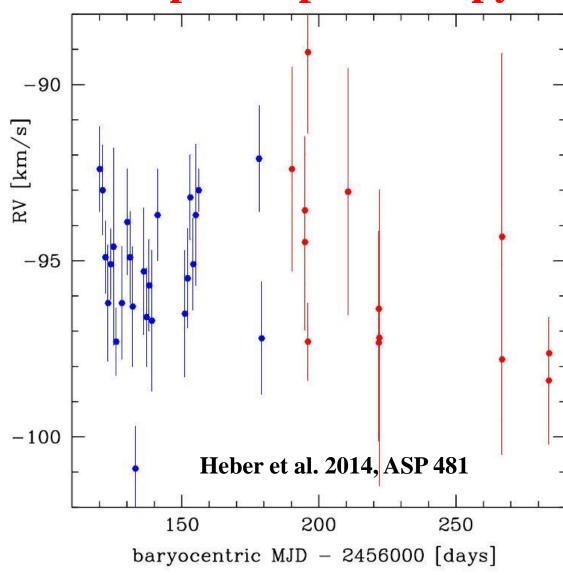
- Soft X-ray spectrum
- $P = 19.156 \pm 0.001 \text{ s } (3 \text{ } \sigma \text{ } \text{c.l.})$
- Sinusoidal profile
- Pulsed Fraction =  $31 \pm 4 \%$




X-ray emission from a <u>compact</u> companion?






# Nature of the compact companion of BD +37° 442





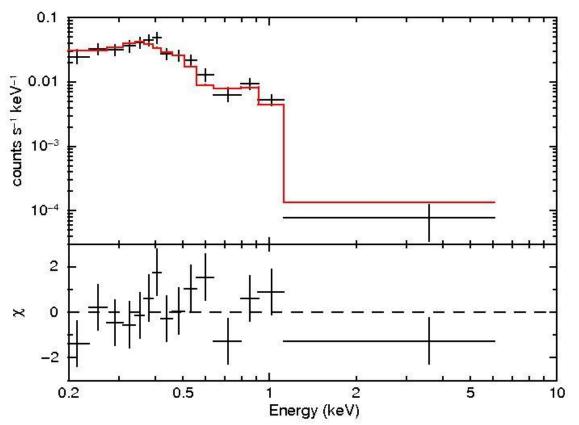


# Optical spectroscopy of BD +37° 442



High-resolution timeresolved spectroscopy with CAFE (Calar Alto) and SARG (TNG)




- large (~ 60 km/s)
   projected rotation
   velocity (⇒ binary
   similar to HD 49798?)
- no evidence of radial velocity variations

no compact companion?





# Alternative for the X-ray emission of BD +37° 442



- 2 thermal plasma components (kT = 0.17 & 0.72 keV) with proper He & metal abundances
- $L_X \simeq 1.3 \times 10^{31} \text{ erg/s} \Rightarrow$   $L_X/L_{bol} \simeq 1.3 \times 10^{-7} :$ consistent with O-type stars

X-ray emission comparable to that of HD 49798 during eclipse

intrinsic X-ray emission from the sdO star itself?

N. La Palombara





## X-ray observation of other sdO stars

First systematic search of X-ray emission from a complete flux-limited sample of sdO stars:

- snapshot observations (4 ks) with Chandra HRC-I of a sample of 19 sdO stars with V < 12 and d < 1 kpc</li>
- follow-up observations of detected sources with XMM-Newton

Approved for AO14 and performed in 2013

| Name                   | d (pc)     | V     |
|------------------------|------------|-------|
| $BD + 75^{\circ} 325$  | 150-280    | 9.55  |
| $BD + 25^{\circ} 4655$ | 100-130    | 9.69  |
| BD-22° $3804$          | 230-440    | 10.03 |
| $BD+37^{\circ} 1977$   | 2500       | 10.15 |
| $BD+39^{\circ} 3226$   | 220 - 430  | 10.18 |
| BD-03 $^{\circ}$ 2179  | -          | 10.33 |
| $BD+28^{\circ} 4211$   | 85-120     | 10.51 |
| CD-31 4800             | 220 - 400  | 10.52 |
| $BD+48^{\circ} 1777$   | 120 - 250  | 10.74 |
| LS V $+22 \ 38$        | -          | 10.93 |
| LS IV -12 1            | 250 - 550  | 11.16 |
| Feige 34               | 85 - 265   | 11.18 |
| LSE $153$              | 150 - 350  | 11.36 |
| LSS $1275$             | < 1000     | 11.37 |
| LSE $263$              | 150 - 350  | 11.55 |
| $BD+18^{\circ} 2647$   | 600 - 1250 | 11.63 |
| LSE 21                 | 50         | 11.64 |
| LS IV $+10$ 9          | 130 - 330  | 12.05 |
| LS I $+63\ 198$        | -          | 12.80 |





## X-ray observation of other sdO stars

First systematic search of X-ray emission from a complete flux-limited sample of sdO stars:

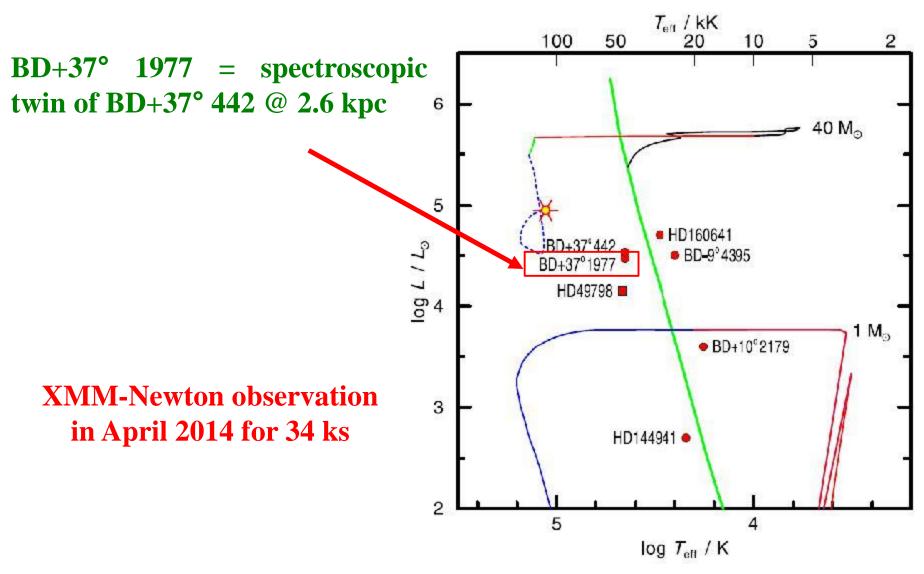
- snapshot observations (4 ks) with Chandra HRC-I of a sample of 19 sdO stars with V < 12 and d < 1 kpc</li>
- follow-up observations of detected sources with XMM-Newton

Approved for AO14 and performed in 2013



#### Three new X-ray detections:

- 1 luminous sdO (BD+37° 1977)
- 2 compact sdOs (BD+28° 4211 & Feige 34)


La Palombara et al., 2014, A&A, 566

| Name                   | d (pc)     | V     |
|------------------------|------------|-------|
| $BD + 75^{\circ} 325$  | 150-280    | 9.55  |
| $BD + 25^{\circ} 4655$ | 100-130    | 9.69  |
| BD-22° $3804$          | 230 - 440  | 10.03 |
| $BD+37^{\circ} 1977$   | 2500       | 10.15 |
| $BD+39^{\circ} 3226$   | 220 - 430  | 10.18 |
| BD-03° 2179            | -          | 10.33 |
| $BD+28^{\circ} 4211$   | 85-120     | 10.51 |
| CD-31 4800             | 220 - 400  | 10.52 |
| $BD+48^{\circ} 1777$   | 120 - 250  | 10.74 |
| LS V $+22 \ 38$        | -          | 10.93 |
| LS IV -12 1            | 250 - 550  | 11.16 |
| Feige 34               | 85 - 265   | 11.18 |
| LSE 153                | 150 - 350  | 11.36 |
| LSS $1275$             | < 1000     | 11.37 |
| LSE 263                | 150 - 350  | 11.55 |
| $BD+18^{\circ} 2647$   | 600 - 1250 | 11.63 |
| LSE 21                 | 50         | 11.64 |
| LS IV $+10 9$          | 130-330    | 12.05 |
| LS I $+63\ 198$        | -          | 12.80 |





#### XMM-Newton observation of BD+37° 1977







#### XMM-Newton observation of BD+37° 1977



- 2 thermal plasma components (kT = 0.12 & 0.84 keV) with proper He & metal abundances
- $L_X \simeq 3.1 \times 10^{31} \text{ erg/s} \Rightarrow$   $L_X/L_{bol} \simeq 3.5 \times 10^{-7}$ : consistent with O-type stars

X-ray emission comparable to that of HD 49798 during eclipse and that of BD+37° 442

intrinsic X-ray emission from the sdO star itself





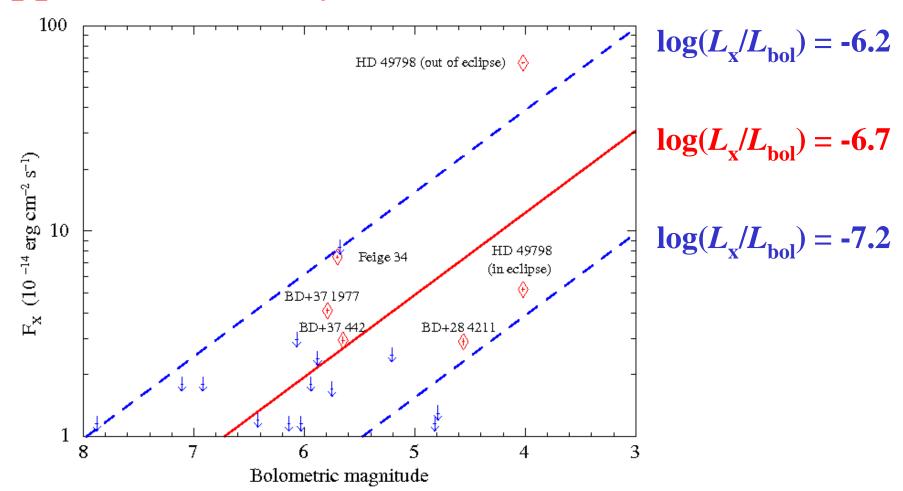
# X-ray emission of detected luminous sdO stars

Spectra modeled with multi-temperature thermal-plasma components (*mekal*), as in normal O-type stars (Nazé 2009):

|                    | kT1<br>(keV) | kT2<br>(keV) | kT3<br>(keV)            | $\log(L_{\rm x}/L_{\rm bol})$ |
|--------------------|--------------|--------------|-------------------------|-------------------------------|
|                    |              |              |                         |                               |
| HD 49798           | 0.14         | 0.71         | <b>5</b> ( <b>fix</b> ) | <b>-7.1</b>                   |
| <b>BD</b> +37° 442 | 0.17         | 0.72         | -                       | <b>-6.7</b>                   |
| <b>BD+37° 1977</b> | 0.12         | 0.84         | -                       | <b>-6.5</b>                   |

- good spectral fit with 2/3 components
- $\log(L_{\rm x}/L_{\rm bol})$  in agreement with the typical range -6.7(±0.5)




X-ray emission due to shocks in the stellar wind

16/17





# (Upper Limit) X-ray flux of the observed sdO stars



intrinsic emission possible for almost all the observed sdO stars



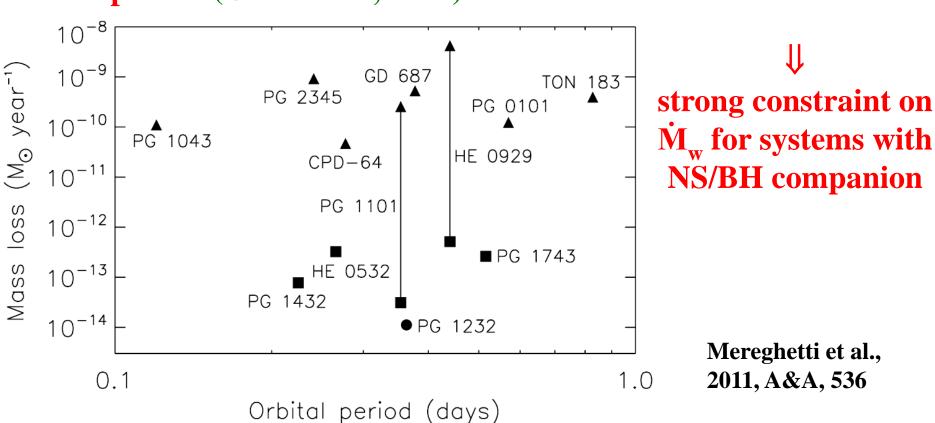


# Swift observations of binary sdB stars

Prediction of current stellar evolutionary models (e.g. Han et al., 2002; Han et al., 2003): most early-type subdwarf stars in close binary systems have compact companions (mainly WDs, but also NSs or BHs in some cases)

- hypothesis difficult to test directly with optical observations
- X-ray observations can be a useful tool to identify systems containing a compact object (through either thermal emission from or matter accretion onto the compact-star surface)




X-ray survey of a sample of candidate binary sdB star with a compact companion





# Swift observations of binary sdB stars

- optical mass function + inclination (estimated assuming locked rotation) ⇒ lower limit on the companion mass
- lower limit exceeding the masses of late MS stars ⇒ compact companion (Geier et al., 2010)







#### XMM-Newton observation of CD -30° 11223

Eclipsing system sdB+WD (Vennes et al. 2012; Geier et al. 2013):

- $P_{\text{orb}} = 1.2 \text{ h (shortest } P_{\text{orb}} \text{ for a sdB+WD system)}$
- $\bullet$   $\mathbf{M}_{\mathrm{WD}} = \mathbf{0.74} \ \mathbf{M}_{\odot}$
- $\bullet$   $\mathbf{M}_{\mathrm{sdB}} = 0.47 \ \mathbf{M}_{\odot}$

target observed for 50 ks by XMM



source undetected, with luminosity upper limit =  $1.5 \times 10^{29} \text{ erg/s}$ 



 $\dot{M}_{\rm w} < 3 \times 10^{-13} \, {\rm M}_{\odot}/{\rm y}$ 

much lower than for Swift sources

(Mereghetti et al., 2014, MNRAS, 441)





#### **Conclusions**

The first X-ray observations of hot-subdwarf stars have shown that:

- 1) sdO stars are an established class of X-ray sources, where X-ray emission can have two different origins:
- accretion onto a compact companion
- internal shocks in the stellar wind
- 2) sdB stars are undetected at X-rays so far:
- $_{\bullet}$  no intrinsic emission for single stars (lower  $\dot{M}_{\rm w})$

#### Binary systems with compact objects are useful to:

- confirm the evolutionary models
- probe the properties of the subdwarf wind