GRB	WCD	LAGO	Conclusions

GRB detection at ground level using Water Cerenkov Tanks

Hugo Rivera

May 21, 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

GRB	WCD	LAGO	Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

Gamma Ray Bursts

- Discovery
- BATSE
- Beppo-SAX
- SWIFT
- 2 Water Cherenkov Tanks
 - Single Particle Technique
 - WCD calibration

3 The Large Aperture GRB observatory

- The Large Aperture GRB observatory
- High Altitude Sites
- Prototypes

GRB	WCD	LAGO	Conclusions
0000000			
Discovery			

Discovery of GRBs: Vela 5

GRBs - Vela 5

Discovered by accident in the 60's by US military satellites

GRB

- $\Delta t \approx 0.01 \mathrm{s}{-100 \mathrm{s}}$
- E > 100 KeV

Enigma for 30 years

- Origin
- Distance
- Luminosity

BATSE: 1991 -	2000		
BATSE			
GRB 00000000	WCD 00000000	LAGO 000000	Conclusions

Compton Gamma Ray Observatory

- OSSE 50KeV 10MeV
- BATSE 20KeV 20MeV
- COMPTEL 800KeV 30MeV
- EGRET 20MeV 30GeV

BATSE

- Field of view: 4π sr
- $\bullet~{\rm Flux}>$ 0.1 $\gamma{\rm cm}^{-2}{\rm s}^{-1}$
- Angular resolution > 4^o

GRB	WCD	LAGO	Conclusions
0000000			
BATSE			

BATSE: 1991 - 2000

Duration

2 distinct populations

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

BATSE: 1991 -	2000		
BATSE			
GKB ○00●○○○○○	00000000	000000	Conclusions

BATSE sky

BATSE showed

- GRBs are isotropes
- GRBs are not homogeneous
- Need to measure distance to GRBs

GRB	WCD	LAGO	Conclusions
00000000			
Beppo-SAX			

Beppo-SAX: 1996 - 2002

- GRB 40 700KeV monitor
- Various X-ray detectors
- Angular resolution: 50 "

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

GRB	
00000000	С

NCD 000000000 LAGO 000000 Conclusions

Beppo-SAX

GRB 970508

- Observation of absortion lines in the optical spectrum of the afterglow
- Redshift ≈ 0.84
- Cosmological origin

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Redshifts			
Beppo-SAX			
GRB 000000000	WCD 00000000	LAGO 000000	Conclusions

Luminosity

Typically
$$10^{51}-10^{54}\ \text{erg}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Sun

 $4\times 10^{33}~\text{erg}$

Our galaxy

10⁴⁴ erg

Redshifts			
SWIFT			
GRB ○○○○○○●○	WCD 00000000	LAGO 000000	Conclusions

SWIFT (2004 -) allowed detection of short GRB afterglows, high redshifts...

Long GRBs

- happen in star formation zones
- likely to be core-colapse of massive stars
- connection with supernovas

Short GRBs

• dimmer but harder spectrum

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- coalescence of a pair of objects?
- more data still needed

At higher energies?				
SWIFT				
GRB ○○○○○○○○●	WCD 00000000	LAGO 000000	Conclusions	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

EGRET

- detected 16 GRBs
- $\bullet\,$ spectrum with a power law of about ≈ 2.2
- 3 GRBs with photons of $E_{\gamma} > 1~{
 m GeV}$
- maximum energy 18 GeV

Observation at higher energies could help

GLAST (2007) should give the answer. Has it?

Single Particle Te	Single Particle Technique				
Single Particle Technique					
GRB 000000000	WCD ● ○ ○ ○ ○ ○ ○ ○ ○	LAGO 000000	Conclusions		

A different use of a ground array

with SPT there is no direction reconstruction

GRBs are detected as an excess of counts over background

GRB	WCD	LAGO	Conclusions
	00000000		
WCD calibration			

Water Cherenkov Detectors (WCD)

- Pure water
- Optical coating
- Phototube (PMT)

- Electrons
- Photons
- Muons

Cherenkov light			
WCD calibration			
GRB 000000000	WCD ○○●○○○○○○	LAGO 000000	Conclusions

Particle crossing a medium at a speed higher than speed of light in that medium produce coherent Cherenkov light

Light mainly in the UV and blue

GRB 000000000	WCD 00000000	LAGO 000000	Conclusions
WCD calibration			
Water			

Cherenkov photons propagate in Water and get absorved

The absortion length in water depends of $\lambda.$ It varies from a few centimeters to tens of meters

Optical phenomena (e.g. scattering) may take place

Cherenkov photons will bounce many times before reaching the $\ensuremath{\mathsf{PMT}}$

TM Tyvek liner			
WCD calibration			
GRB 00000000	WCD ○○○○●○○○○○	LAGO 000000	Conclusions

Water enclosed in a light-tight bag

Tyvek is a highly reflective and diffusive material

• Allows light to reach PMT well after 100 ns (i.e. more than 10 reflections)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Makes light in a tank uniform

00000000	000000000	000000	Conclusions
PMT basics			

- Vacuum-tight glass envelope
- Photon knock on photocathode and electron release (photoelectric effect)
- Each dinode is a multiplication stage
- Last step is anode, for a cleared signal

(日) (圖) (E) (E) (E)

Response to pa	articles		
WCD calibration			
GRB 000000000	WCD 000000000	LAGO 000000	Conclusions

Electrons (and positrons)

- Typical energy: few 10 MeV
- $\approx 10\%$ of secondaries

Simple calorimeter, signal proportional to energy

Photons

- Typical energy: few MeV
- \approx 90% of secondaries

1.2m is deep enough to produce pair creation. Then the e - e + pair produces Cherenkov light

Muons

- Typical energy: 1 - 50 GeV
- $\approx 1\%$ of secondaries

Usually to energetic to be stoped inside a WCD. Leaves a signal proportional to the track length.

Charge histograms			
WCD calibration			
GRB 000000000	WCD ○000000●0	LAGO 000000	Conclusions

・ロト・4回ト・4回ト・4回ト 回 のなぐ

Muon hump to VE	M		
WCD calibration			
GRB 000000000	WCD 00000000	LAGO 000000	Conclusions

VEM: Vertical Equivalent Muon The average charge deposited by a vertical and central muon

VEM - hump shift due to muon track distribution and photostatistics

Muon decay rate proportional to water volume of the WCD. Signal is two consecutive peaks with a time difference of $\approx 2.2 \mu s$.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

GRB	WCD	LAGO	Conclusions
000000000	00000000	000000	
The Large Aperture GRB obs	ervatory		
LAGO			

LAGO

Large Aperture GRB Observatory

Idea

Detect high energy GRB at ground level

Who?

- Argentina
- Bolivia
- Mexico
- Peru
- Venezuela

How?

Using WCD:

- Easy to calibrate
- Able to "see" photons

Where?

High altitude mountain sites (> 4000m)

Why go high?			
High Altitude Sites			
GRB 000000000	WCD 00000000	LAGO ○●00000	Conclusions

Particles in altitude

At 5200m

- 100 times more signal
- 8 times more noise

•
$$S/\sqrt{N} \approx 35 \approx \sqrt{1600}$$

1 detector at 5200 $\approx 1600~\text{Auger}$ detectors at 1400m

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

LAGO sites			
High Altitude Sites			
GRB 000000000	WCD 00000000	LAGO ooooo	Conclusions

Various Sites

- Sierra Negra, Mexico
- Monte Pico Espejo, Venezuela
- Chacaltaya, Bolivia
- Auger South, Argentina

・ロト ・聞ト ・ヨト ・ヨト

Detection in coincidence Bolivia - Argentina

GRB 000000000	WCD 00000000	LAGO 000000	Conclusions
High Altitude Sites			
Pictures			

Prototype detectors					
Prototypes					
GRB 00000000	WCD 000000000	LAGO ○○○○●○	Conclusions		

Prototype detectors for Chacaltaya

- Old prototype equipment from Auger:
 - Electronics
 - PMTs
- Commercial water tanks:
 - 1 PMT per tank
 - 6 tanks per electronic
- Software rewritten:
 - Data Acquisition
 - Detector simulations (I was involved ;-)

Low cost

GRB 00000000	WCD 00000000	LAGO ○○○○○●	Conclusions		
Prototypes					
Prototype detectors					

<ロト <回ト < 注ト < 注ト

GRB	WCD	LAGO	Conclusions

- GRBs are no longer the mistery the used to be.
 Still, more information at higher energies is needed.
- WCD are very efficient detectors to study GRBs from the ground
- Auger is quite competitive with ground based experiments
- A low-cost efficient experiement can be done using WCD at high altitudes

gracias