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Main research topics:

Data analysis

Decision analysis

Evaluation of seismic risk

Industrial statistics

Multivariate approximation

Nonparametric Bayesian inference

Reliability analysis

Robustness of Bayesian analysis

State-space modeling

Stochastic models and parameter estimation in population dynamics
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Natural hazards in Italy

Natural phenomena of serious concern in ltaly

e ecarthquakes
e landslides caused by extreme rainfalls

e Mathematical modelization requires the development of stochastic
models
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Earthquake occurrence analysis
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Modelization of large earthquake sequences

e Renewal processes are considered appropriate models for sequences of
large earthgquakes, as one can assume that the stress accumulation
process restarts after each event.

The renewal model implies that the times between large seismic events
can be considered as realizations of i.i.d. random variables T;, I, .. ..

e If Fis the common distribution function of the T;, the interest is in
computing the occurrence probability at time t of an event in the next u
years given the date t,,; of the last event before t

F(t _|— U — JcIast) o F(t o JcIast)
1— F(t - J[Iast)
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Most used distributions

e exponential distribution, hazard function

h(t) = 1j§:t()t) — A, f density function
e gamma distribution
bata—le—bt
h(t) =
Na) —T'(a, bt)
e lognormal distribution

f(t
h(t) = (t initially increasing, then decreasing,

6 (Iogt—&)
o
— 0

e Weibull distribution
h(t) =ca® t< decreasing for ¢ < 1, increasing if ¢ > 1
e if h(-)is multimodal ?

decreasing for a < 1, increasing fora > 1
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Nonparametric estimation of F

e Renewal processes are clearly a simplification of the real physical
process but they can lead to useful results if F is properly estimated.

e Nonparametric methods are adaptive to anomalous behaviour in the data
set

e \We do not make any assumption on the functional form of the distribution
F of the inter-event times but consider this distribution as a random
function modelled by a mixture of Polya trees (Lavine, Ann. Statist., 20,

1225-1235 (1992))
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The Bayesian approach

e X, Y absolutely continuous r.v.s; Bayes formula:

fxry(x] )_fx,Y(X,U) B fyix (ylx)fx(x)
IR =750 ) [ hyx (i) fx(w) du

e In Bayesian inference, Bayes formula used for combining

o Information from observations x expressed by the likelihood
L(0;x) = f(x]0), f(x|0) density of r.v. X = (X4,..., Xn)

o a priori available information about unknown 6, assumed
summarizable in a density function 7t(0) (a priori density);

e 0Oisseen as ar.v. with density 7t(0), f(x|0) is seen as a conditional
density, =a posteriori density of 0

~ f(x[0)7(0)
Blx) = [f(xhw)m(u) du
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The Bayesian nonparametric approach

e if we don’t want to specify the form of f(x|0) up to an unknown
parameter, we can model f or the corresponding distribution function F as
a stochastic process whose trajectories are densities or distribution
functions (random distribution function, random probability measure).

e e.g.,if Y(x),x € Ris a (right) continuous non-decreasing stochastic
process such that Y(—oo) = 0and Y(oco) = o0, then

F(x) =1 —exp(=Y(x))

has trajectories satisfying conditions characterizing distribution functions.
e extending the parametric Bayesian approach to this situation makes it
possible to obtain a posteriori information on F on the basis of a sample,

e.g.
E(F(x)|[X1,...,Xn)
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Polya Trees

e E™ ={e: e binary string of length m}, E*=J _ E™ E° =1
e X separable measurable space (e.g. R™)
[T={m,;m=0,1,2,...} nested partitions of X
o 7, =X,m ={By,B;},BoNB; =0,BUB; =X
o Tl = {Boo, B01, BlO1 B11} , Boo M Bm — @, Boo U B01 — Bo
BlO N By = (b, BlO UBy =B,
Beo
/

® €€Em,B€€7Tm \‘ > Eﬁm+1
Beir |
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Polya Trees (continued)

e A random probability measure P on X is said to have a Polya tree
distribution with parameters (TT1, A), if there exist nonnegative numbers
A ={x., € € E*} and random variables Y = {Y., e € E*}s.t.

@)

@)

©)

all the random variables in Y are independent
Ve € E*, Y¢ has a Beta distribution with parameters ¢ g and . ,
Vm=1,2,...ande € E™
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The role of E(P)

Define the probability measure Q = E(P), by Q(B) = E(P(B)) for any
measurable set B

e itis easytocompute Q(B.) VB, € U _, 7t
e () can be extended to the measurable sets generated by U:i:o Tl
o iftherv’s X;, X,,...are asample from P, i.e. given P, they are i.i.d. with
distribution P, then
P(X; € B) = Q(B)

e Q is determined once IT, A are given; in the case X = R, a distribution
function G(x) is given and the partition construction is lead by G;
e usual choices for oe,, ..., e, :m? 2™, k™ (k > 1)
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Predictive distribution

o JP|X; = x4 has still a PT distribution; simple updating rule: it is enough to
add 1 to every &, s.t. X; € B¢

e exploiting the updating rule it is easy to compute P|X, = x,, X; = x; and
SO on

e if X =R, thenitis easy to compute

E(P((—oc0,%))[x1, ..., xn) = E(F(x)|X1,. .., Xn)

l.e. a Bayesian estimate of the (unknown) distribution function of the
observations X4, ..., Xn
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Choice of G: the Generalized gamma distribution

According to the information provided by the literature on the possible shape
of the inter-event time distribution for strong earthquakes G is taken as a
Generalized gamma distribution (X = R_.)

e distribution with density

pypon—1 _&n
g(t;n,&,p):na r(e;(f( s ),n,ci,p>0

e this class of distributions properly includes usual distributions
nN=p=1 exponential

n=1 gamma
p=1 Weibull
P — OO lognormal
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Mixtures of Polya Trees

Mixtures of PT instead of single PT’s have the advantage of decreasing
influence of the partition scheme and of the parameters of G

e Given a random variable U (index) with mixing distribution H s.t. for each
uwe have P|lU=u ~ PT (IT,, Ay)

e the distribution of a random measure P is said to be a mixture of Polya
Trees if, for any measurable set & of probability measures on X

Pr[P e §] = JPr [P € 8lu] H(du)

e parameters of G random vector u = (1, &, p), hierarchical structure:

o G(tlu)
o H(u) = Gamma(n|d; g) x Gammal(&|B;a) x Exp(p;b)
o 0~ Gammal(h,f) 3 ~Gamma/(c, d)
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Estimation via Markov Chain Monte Carlo (MCMC)

t =14,...,1t, Inter-event times

e update the current state z = (1, &, p, d, ), performing an iteration of
MCMC computation using Metropolis-Hastings within Gibbs sampling
such that 7t(z;|z_;, t) is the equilibrium distribution of the Markov chain;
repeat 500,000 times discarding the first 100,000 states (burn-in)

e every 50 iterations sample from the full conditional distribution of P
sampling from the Polya tree

z,t by

o generate values for the variates Y.’s, and hence obtain probabilities
{p1,...,pom | of belonging to the sets at the level m
o draw samples of 50 inter-event times according to those probabilities

e use the simulated inter-event times to get a density estimate after a
kernel smoothing
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Hazard maps of Italy

e Data sets: earthquakes with M,,,, (Moment Magnitude) > 5.3, occurred
after 1600 up to 2002, drawn from the catalogue CPTI04; the inter-event
times are calculated between shocks recorded in each of the
seismogenic areas (DISS) belonging to the same tectonically
homogeneous macroregion (MR)

—> we get 8 data sets used to estimate 8 density functions

e [or each area the probability is obtained that an event occurs in the
interval (t,t + 1) given the date t, of the last event
F(t4+uw—ty) — F(t — tp)

1—F(t—to)

e for each MR parameters of H(u) estimated through data from the other

MR’s and some information available in the seismic literature
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Homogeneous regions and seismogenic areas
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estimated densities

density function

density function

density function

density function

nonparametric estimate of density functions
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Occurrence probabilities
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0.323
0.300
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0.229
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Modelization of rainfall patterns
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The problem

i nkscol=a

6—9 Dec. 2004, Villagrande.
Peak of 500 mm in 12 h.
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Aim of the work

Because of

e high frequency of heavy or extreme rainfall events, which usually occur in
a sudden way
e Vvery local phenomenon — failure of GCM'’s

Then

e characterize the occurrence of extreme events in the seasonal rainfall
path

e highlight a reasonable, although necessarily simplified, rainfall
mechanism

e derive hydrogeological risk indexes, flash flood thresholds, ecc.
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The study area

4 pluviometric stations of the Governmental Hydrographic Service:

Daily rainfall data

Standard Period from 1961-1990 (WMO)

Season from September—January

no other data are available

many missing data from 1990-2000 and changes in the location of the
pluviometric stations
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Data analysis

From September—January, 1961-1990

ARZANA GAIRO JERZU VILLAG.

Altitude (m a.s.l.) 674 784 550 679
mean n. of wet days (nr) 45.9 38.3 45.9 30.0
mean daily rainfall (mm) (W) 3.86 3.47 3.26 3.55
Std. Deviation (mm) (0) 14.15 12.74 10.89 13.81
mean maximum (mm) 120.1 100.5 92.3 133.4
mean Cumulate (mm) 591.0 531.1 499.2 542.5
mean n. of events >40mm (nr) 3.9 3.1 3.1 3.4
Outlier threshold (mm) (i + 100) 145.2 130.9 112.2 141.6
Total n. of events > u + 100 (nr) 9 9 7 7
Total n. of events =100 mm (nr) 22 16 9 15
complete records (nr) 22 24 23 16
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Hidden Markov Models (HMMs): A graphical definition

{X¢}¢ rainfall process, {C} hidden process

rainfall

» ® - O ®
B SY

Correspondence between hidden states and the concept of discrete
weather state
(Bardossy & Plate, 1992)

e |n B & P: states defined a priori (GCM'’s output)
e In HMMs: states inferred from data
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HMMs: A formal definition

X: = (Xiq, - -+, Xiq) V., ( rain stations; x; € Ry
Ci €{1,..., m/} hidden process

L (-) = distribution of -

{C+} homogeneous, first-order Markov Chain
L(Xt|X1:t—11 Cl:t) — L(Xt‘ct) — Hi L(Xtilct)
L(X¢|C) does not depend on t

£“(Xti|Ct — C) = Wic 60 + (1 — Wic)F( . |eic)

Charles et al. (1999)
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The adopted model

F = mixture of Weibull distributions:

B /x X

Wix, « B) =— (—)B_lexp [— (—)B] X >0;0>0, >0

X \X X

e Weibull distr. is an extreme value distribution
e s a transformation of the exponential distribution
e mixtures can capture different types of extreme values

=
L(X|Cr =c¢) =

Wic o+ (1= Wic) Xy, viW( - (o, BY))
V>0 55 vi=1 K=1,23.
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Estimation and diagnostics

e MVNHMM toolbox, Kirshner (2005, 2007),
http://www.cs.ualberta.ca/~sergey/ MVNHMM/
(EM algorithm)

X~ W(a B) = (X)° ~ exp(1)

e [3 = 2, by fitting a Weibull distribution to annual maxima in each station:
JUST A TRICK!!

e BIC + cross validation, for model selection

e goodness—of—fit, by comparing empirical and estimated relevant
guantities
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Estimated model

e 6 hidden states

o L(XulCi=0c)=mwicd+ (1 —wic) Y i, viW( - |(«

k
ic!

Wic || C=1 C=2 C=3 C=4 CC=5 C=6
Arzana || 0.80 0.04 0.05 0.09 1.00 0.29
Gairo || 0.79 0.05 0.17 035 1.00 0.49
Jerzu || 0.69 0.02 0.04 0.13 1.00 O0.16
Villagrande || 0.93 0.06 0.10 0.35 1.00 0.76
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Interpretation of states

In terms of weather states:

» 5 = high pressure system

» 2 = moist currents from South—East

» 3 = moist currents from South—East, less intense
phenomena, except for Gairo & Villagrande

» 4 = moderate rainfall
» 6 = rainfall from absent to weak

» 1 = negligeable rainfall, apart from Gairo

Note that states appear to be well separated.
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