

What does one need to nap joint evolution of

LSS ant galaxies? *

- Spectroscopy at faint magnitude limits
- $\overrightarrow{A A B}>22$ brings peak of $N(z)$ at $z>0.5$.
- Reduce cosmic variance:
- fair volume sampled at high redshift ($\sim 100 \mathrm{~h}: 1 \mathrm{Mpc}$ side) \rightarrow large areas (1-
- 10 deg2)
\because Sample cosmic epochs enough to measure evolution
- large sample ($\mathbf{1 0 , 0 0 0}$ - $\mathbf{1 0 0 , 0 0 0}$ galaxies)

NELD. 8 m -class telesc̈qpe + HIGH.MULTALEXING

- Understand the inter-play between dark matter and galdxies:
.. - Multi-band information (radio,IR,..UBVRIJK...., X-rays):
- High-resolution imaging (HST)

The 2 point corrélation function

- Excess probability over random that a galaxy has a neighbour at a distance r
- for a random (uniform) distribution: $\delta \mathrm{P}=\mathrm{r}_{0}{ }^{2} \delta \mathrm{~V}_{1} \delta \mathrm{~V}_{2}$
- a clustered distribution can be (incompletely) described by: $\delta \mathrm{P}=\mathrm{r}_{0}^{2}{ }^{2} \xi\left(1+\left(\mathrm{r}_{12}\right)\right) \delta \mathrm{V}_{1} \delta \mathrm{~V}_{2}$
\because In general well described by a single power ${ }^{*}$ law
, between ~ 1 and $\sim 30 \mathrm{Mpc} \mathrm{h}^{-1}$.

Distorsions in the redshift space

Real space .
Redshift space

- Finger-of-God on small scale (peculiar velocities):
- Coherent infall of galaxies on laige scale (Kaiser, 1987).

Lơcal Uniwerse (SDSSS)

- Wp(rp) analysit vs. Mass

- . Liocall Universé (SDSS)

\therefore Wp(rp) analysis *s. D4000, morphology (C), stellar mass surface density

Li et all. 2006

information on how galaxies populate DM halos.

COCAL UNIVERSE (SDSS)

- Luminous galaxies more clustered than faint ones,
- Different behaviour at different scales:
\because - Small scales: costant amplitude $<\mathrm{L}^{*}$, increasing $>$ I* *
- Large scales: clustering, amplitude increases with L
- massive galaxies more clustered than less massive galaxies
- Galaxies redder, large $\mathrm{D}_{40000_{*}}$, concentrated, high μ_{*} more clustered, steeper CF
- Larger difference at small scales for low-L low-M
- A single power Law does not seem enough

The VVDS' Project

Thand magnitude selected

- ULLTRA-DEEP: $22.5 \leq \mathrm{I}_{\mathrm{AB}} \leq 24.75,0.25 \mathrm{deg}^{2}$
- DEEP: $17.5 \leq \mathrm{I}_{\mathrm{AB}} \leq 24,1.2 \mathrm{deg}^{2}$
- WIDE: $17.5 \leq \mathrm{I}_{\mathrm{AB}} \leq 22.5$, ${ }^{\prime} \mathrm{Adeg}^{2}$
\because - Multi入 information, to fit SEDS $->$ luminosities, spectral types"; stellar masses
- u*b:g'r'i'z',UBVRI,J,K,GALEX,SPITZER,XMM,VLA
- Large-areas, 5 fields, total $\uparrow 11$ deg 2.
- 0226-04
- $1000+03$ (now the HST-COSMOS field)
- $1400+05$
- 2217+00

CDFS

- Large numbers, to sample the different populations at the different epochs
(z) - >100000 spectra $0<z<5$

Are galaxies more clustered at high redshift?
\because LeFèvre \& VVDS Team, 2005, A\&A
Q. Early type galaxies are more clustered than late type ones

Meneux \& VVDS Team, 2006, A\&A Red galaxies are more clustered than blue ones

. Similar behaviour observed in DEEP2 sturvé \rightarrow statistical moḍels from Contoy, Wechsler \& Kravtsov (astro-ph/0512234) seem to reproduce well the observed behaviour with simple recipe (by matching halo * : <<primordial» masses in a Λ-CDM simulation to observed luminosity:

z SDSS

- low mass galaxies are less clustered than high mass ones
- Clustering evolution different for "low and * high mass galaxies . .
- low numbers in the highest mass binst enlarge the volume (at the expense of depth)

Meneux \& VVDS team, 2006, in preparation

$<z \geq \sim 0.9$

- Red/early galaxies more clustered than blue/late galaxies*
-*bright galaxies cluster more strongly than faint ones
- high mass galaxies cluster more strongly than low mass ones
- Clustering evolytion stronger for low luminous galaxies.
-. Clustering evolution different for high masstow mass galaxies

CE in the VADS-Wide

Preliminary results:

Hint for a change of slope at

 low scales, starting at z~0.7 NEED further investigation *Would make sense in a Halo Occupation Model framework

CE in the VNDS-Wide

- r_{0} is flatter with respect to the VVDS-Deep sample, no change in z:
- lower flux limit, larger volume sampled
- . in the VVDS-Wide, luminous galaxies dominate at all redshifts
- Comparison with VVDS-Deep cut at the same flux limit:
- similar behaviour
- cosmic variance?

zCosmos 10 k sample

	zCosmos	Deep	Wide
Limiting mag	22.5	24	22.5
$<\mathrm{z}>$	0.6,	0.9	0.6
sampling	$\sim 30 \%$	35%	20%
Area	1	0.7	4
\# galaxies	~ 10000	~ 10000	~ 13000
Log(M) >10	$\sim 50 \%$	25%	50%

\%.. Betfer measuirement of spectral features:
o. ACS images (morphology)

- VVDS-DPEP, DEEPP2 accumulating several new measurements on the properties of galaxy clustering at $\mathrm{z} \uparrow 1$; with increasing statistical precision and minimizing systematic errors due to cosmic variance.
- Red/early galaxies more clustered thãn blue/late galaxies:
- bright galaxies cluster more strongly than faint ones . .
- Clustering evolution stronger for low luminous galaxies
- high mass galaxies cluster more strongly than low mass

Clustering evolution different for high mass/ow masse
VVDS-Wide, zCosmos bettér tracing of evolution of clustering properties for luminous, massive galaxies

