The VHE future

A. Giuliani

The Cherenkov Telescope Array

Low energy 4.5° FoV

> 2000 pixels ~ 0.1

Medium energy 7° FoV

2000 nixels

- 0.18

High energy 10° FoV

~ 0.2 - 0.3

The Cherenkov Telescope Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Universidade de São Paulo Instituto de Astronomia, Geofisica

e Ciencias Atmosferica

MINISTERO

NORTH-WEST UNIVERSITY YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT

4

Fig. 5 The Davies-Cotton design.

Fig. 6 The Schwarzschild-Couder design.

- Reduce the dimension, the weight, and the cost of the camera at the focal plane of the telescope

- Compact and stiffer mechanical structure
- Silicon-based photo-multipliers as light detectors, thanks to the reduced plate-scale. SiPMs allow us to perform observations during Moon-light, increasing the observatory duty-cycle
- Optimal imaging resolution across a wide field of view

The primary gamma-ray signal had an energy of 10 TeV and a core distance of 142.77m.

The night sky background is at a level of 1.9 x 10^{12 phm-2 s-1 sr-1} (about three photoelectrons per pixel)[.]

Color-bar shows number of photoelectrons per pixel.

ASTIN Cita cherentov telescope array

Good sensitivity for energies greater than 10 TeV

High-Energy end of the source spectra

Stamerra et al

p-p interactions

We assume a power law spectrum for CRs: $N_p(E_p) \propto E_p^{-\delta}$

Fraction of proton kinetic energy transferred to pion (from data):

p-p interactions

Pion rest frame:

Lab frame:

$$E_{\gamma} = \gamma \left(E_{\gamma}^* + v p_{\gamma}^* \cos \theta^* \right)$$

max and min energies -> $\cos \theta^*$

$$\frac{m_{\pi^0}}{2}\sqrt{\frac{1-\beta}{1+\beta}} \le E_{\gamma} \le \frac{m_{\pi^0}}{2}\sqrt{\frac{1}{1}}$$

p-p interactions

the gamma ray spectrum is symmetric (in log-log) with respect to:

Good sensitivity for energies greater than 10 TeV

High-Energy end of the source spectra

Particles spectra very near the "knee" energy

Slide Title

Large Field of View

Large exposure of the Galactic plane

Multiple source observations

Transient and serendipitous sources

Large Field of View

Large exposure of the Galactic plane

Multiple source observations

Transient and serendipitous sources

Good angular resolution @ **HE**

Unidentified Sources

Remnant of the historical SN 1006

Strong Radio and X emission due to synchrotron demonstrates the presence of TeV electrons,

Image courtesy of CEA/DSM/DAPNIA/SAp

European Space Agency

ctea terentov telescope array

Remnant of the historical SN 1006

Strong Radio and X emission due to synchrotron demonstrates the presence of TeV electrons,

TeV emission detected by HESS, morphologically well correlated with the emission in the Hard X band (after convolution with HESS Psf)

Image courtesy of CEA/DSM/DAPNIA/SAp

European Space Agency

CCCCC terentov telescope aray

Remnant of the historical SN 1006

Strong Radio and X emission due to synchrotron demonstrates the presence of Tev electrons,

TeV emission detected by HESS, morphologically well correlated with the emission in the Hard X band (after convolution with HESS Psf)

N/S regions with similar spectrum ~ 2.3 btw .1 and 10 TeV

Acero et al. 2010, A&A, A62

CRACTOR CECCOPE array

Remnant of the historical SN 1006

Strong radio and x emission due to synchrotron demonstrates the presence of TeV electrons,

TeV emission detected by HESS, morphologically well correlated with the emission in the Hard X band (after convolution with HESS Psf)

N/S regions with similar spectrum \sim 2.3 btw .1 and 10 TeV

The leptonic scenario fail to fit the data > 10 TeV

Acero et al. 2010, A&A, A62

CRACTOR CECEA cherenkov telescope array

Remnant of the historical SN 1006

Strong radio and x emission due to synchrotron demonstrate the presence of tev electrons,

TeV emission detected by HESS, morphologically well correlated with the emission in the Hard X band (after convolution with HESS Psf)

N/S regions with similar spectrum ~ 2.3 btw .1 and 10 TeV

The leptonic scenario fail to fit the data > 10 TeV

Hadronic component @ HE

Acero et al. 2010, A&A, A62

Remnant of the historical SN 1006

Strong Radio and X emission due to synchrotron demonstrate the presence of tev electrons,

TeV emission detected by HESS, morphologically well correlated with the emission in the Hard X band (after convolution with HESS Psf)

N/S regions with similar spectrum ~ 2.3 btw .1 and 10 TeV

The leptonic scenario fail to fit the data > 10 TeV

Hadronic component @ HE

Tang et al 2013, RAA, 13

- Young remnant (~2000 yrs)
- Sees in Radio band, Xrays, Gev (Fermi) and TeV (HESS)
- Interacting with molecular clouds or 1713-like ?

- Young remnant (~2000 yrs)
- Sees in Radio band, Xrays, Gev (Fermi) and TeV (HESS)
- Interacting with molecular clouds or 1713-like ?

- Young remnant (~2000 yrs)
- Sees in Radio band, Xrays, Gev (Fermi) and TeV (HESS)
- Interacting with molecular clouds or 1713-like ?

- Young remnant (~2000 yrs)
- Sees in Radio band, Xrays, Gev (Fermi) and TeV (HESS)
- Interacting with molecular clouds or 1713-like ?

Giuliani et al., ICRC 34, in prep.

- Kepler SNR
- → SN 1987A

- Not yet observed in gamma-rays
- Hard TeV emission expected

Tang et al 2013, RAA, 13

HESS J1641-463

H.E.S.S. spectrum accumulated in 72 hr

Very hard source, sp.ind. ~ 2.1

Abramowski et al, 2014

- H.E.S.S. spectrum accumulated in 72 hr Very hard source, sp.ind. ~ 2.1
- It can be monitored for 492 hr [Feb. - Sept., ZA < 35deg]

cta

- (Work in progress) We can investigate:
- performance of the mini-array (SVP);
- is there a spectral cut-off? at which energy?
- nature of this source, SNR? PWN? Binary?

Abramowski et al, 2014

H.E.S.S. spectrum accumulated in 72 hr Very hard source, sp.ind. ~ 2.1

It can be monitored for 492 hr [Feb. - Sept., ZA < 35deg]

cta

(Work in progress) We can investigate:

- performance of the mini-array (SVP);
- is there a spectral cut-off? at which energy?
- nature of this source, SNR? PWN? Binary?

Romano, Vercellone, Giuliani et al., ICRC 34, in prep.

Crab

cta terentov telescope array

Features @ HE end of the spectrum

- other not-IC components ?
- B → the TeV cut-off location depends on Sync vs IC coolings processes

Variability above 10 TeV

(Electrons ~100 TeV producing syc. flares @ 100 MeV produce IC @ 10 TeV)

Other PWNe

Morphological Studies

- morphology / size vs energy (HESS 1825-137, Vela X)
- Evolution of the PWNe
- HE spectrum:
 - maximum electron energies
 - derive B
- PWN in Milagro sources (Geminga)

LS 5039

Aharonian et al, 2006

H.E.S.S. spectrum accumulated in 70 hr Data are not well constrained above 10 TeV

It can be monitored [Mar. - Sept., ZA<35 deg] for more than 400 hr

It can be studied simultaneously with PWN HESS J1825-137 We can investigate:

phase-dependent gamma-ray absorption/emission; phase-dependent spectral modulation.

LS 5039

H.E.S.S. spectrum accumulated in 70 hr Data are not well constrained above 10 TeV

It can be monitored [Mar. - Sept., ZA<35 deg] for more than 400 hr

It can be studied simultaneously with PWN HESS J1825-137 We can investigate:

phase-dependent gamma-ray absorption/emission; phase-dependent spectral modulation.

- ASTRI/CTA Mini-array, 7 units.
- ASTRIsim 100 hr simulation
- 50 hr INFC
- 50 hr SUPC
- Next step:
- Simulation of the detection performance at different orbital phases.

PRELIMINARY!

Romano, Vercellone, Giuliani et al., ICRC 34, in prep.

A. Giuliani – IASF Milano – 9th ASTRI Collaboration Meeting – Bologna, 23-25 / 2 / 2015

PSR B1259-63

H.E.S.S. spectrum accumulated in 50 hr Porb \sim 1236.72 d (\sim 3.4 yr). A few points above a few TeV

It can be monitored [Jan. - Jun, ZA < 35deg] for more than 150 hr. It can be studied simultaneously with PWN HESS J1303-631.

We can investigate [next periastron passage: ~ 2017-09-21]: phase-dependent gamma-ray flux, probing different theoretical emission models (peak and dim around periastron, is it periodic?)

PSR B1259-63

ASTRI/CTA mini-array, 7-units.

ASTRIsim 100 hr simulation of the average spectrum.

Next step:

simulation of the possible flux evolution as a function of the time relative to the periastron passage in order to possibly discriminate different emission scenarios.

Conclusion :

We will have a lot of fun with the ASTRI-CTA mini-array !

Thanks !