

The SRT as a Science Facility

Astronomical Validation & Future Perspectives

Isabella Prandoni Project Scientist

SRT Main Characteristics

<u>Fully steerable</u>, <u>64m diameter</u>, paraboloidal radio telescope.

3,000 t, 70m height

Alt- Azimuth mounting Quasi-Gregorian Optical design with <u>shaped surfaces</u>

Multiple focal positions (P, G, 4 BWG)

Can host up to 20 receivers with <u>frequency agility</u>

Wide frequency range: from 300MHz to 100GHz ($\lambda \sim 3$ mm) Surface Accuracy: rms << $\lambda/10 \ll 300 \ \mu m$

Active surface: efficiency ranges from ~63% at ~10GHz to ~67% at ~100GHz

1008 panels, 1116 electro-mechanical actuators with remote control

I. Prandoni

FIRST GENERATION INSTRUMENTATION

RECEIVERS

BACK-ENDs

DFB: Digital Spectrometer (pulsar) (ATNF Pulsar Digital Filterbank) 1 GHz BW, up to 16384 channels ROACH: 2x512 MHz/1x1024 MHz

DBBC2 (1 GHz, 4 IFs) + MARK 5C (VLBI) + SW Correlator

TP: analog back-end Total Power

7x2 outputs, 2 GHz BW

XARCOS: Digital Spectrometer 8 outputs, 60 MHz BW, 4096 channels

I. Prandoni

SRT – Future Development 2° Generation Instrumentation

	Banda (Sigla)	v _o (GHz)	λ (cm)	N° Ricevitore	v _{Lsky} (GHz)	v _{Hsky} (GHz)	∆ v/ _v (%)	Banda ricevitore (MHz)	Temperatura di rumore (K)	Configurazione	
	Р	<u>0.3</u>	90	1P	0.31	0.42	12	2×110	30	Coassiale a 1.5 GHz	
	L	0.6	50	1P	0.58	0.62	7	2X40	25	Dulcar	
	Ľ	1	30	1P	0.70	1.30	60	2×600		Puisai	
	L	<u>1.5</u>	18-21	2P	1.30	1.80	32	2×500	5	Coassiale a 0.3 GHz	
	S	2	13	2P	2.20	2.36	7	2×160	i — i	Coassiale a 8 GHz	
RAS	S	3	10	ЗP	2.36	3.22	27	2×860		Geo/ASI	
	S	4	7.5	ЗP	3.22	4.30	32	2×1080			
MIUR	С	5	6	1B	4.30	5.80	32	2X1500	15		
	С	Z	5	2B	5.70	7.70	30	2×2000	15		
	X	8	3.6	2P	8.18	8.98	9	2X800		K/Ka →Geo/ASI	
	X	9	3.3	1G	7.50	10.40	32	2X2000			
	Ku	13	2.3	2G	10.30	14.40	33	2X2000	14		
	Ки	17	1.8	3G	14.40	19.80	32	2×2000	18		
	к	<u>23</u>	1.3	4G	19.00*	26.50	33	2X2000	21	Surveys (7 elementi)	
	Ка	32	0.9	5G	26.00	36.00	32	2X2000	25		
	Q	43	0.7	6G	35.00	50.00	31	2X2000	40	19-feeds	
	E	86	0.4	7G	70.00	90.00	25	2X2000	90		
11/12/15	W	100	0.3	8G	90.00	115.00	nd29	2×2000	100	19 feeds	

Multi-feed general purpose ROACH2-based backend

ACTIVE SURFACE – I

Shaping: better illumination of secondary foci

- Null field in region blocked by sub-reflector
- Redistribution of the field over unblocked region - Under-illumination of the external edge

→ Better efficiency over reduced FoV, No spillover, No multiple reflections [high efficiency spectroscopy]

ACTIVE SURFACE – II

Passive Surface: Surface Accuracy: RMS = 306 µm @ 45° Elevation

Gain vs El K band

Active Surface: Correct deformations of backup structure to increase efficiency

- phase 1: gravity deformations only (repeatable effect) -> Optimize Performance @ 20 + 50 GHz

Photogrammetry: Finite Element Analysis (FEA) for correction of antenna geometry at any elevation:

Beam Deformations

- phase 2: wind pressure, temperature gradients corrections (non repeatable effects)
 → Optimize Performance up to 100 GHz → RMS ~150 µm → Efficiency @ 100 GHz ~67%

Metrology: pressure/temperature sensors to measure and correct deformations in real time (Microwave Holography)

TELESCOPE SITE

Pranu Sanguni, San Basilio,35 km North of Cagliari

Fig. 1 – Precipitazioni medie in Italia (Elaborazione SIAN – UCEA).

PROJECT STATUS

<u>2014 - 2015+:</u>

- Fine Tuning: Integration & optimization of all sub-systems
- Precursors: backends (DFB, XARCOS, ROACH), derotator, etc.
- Astronomical Validation

2013, Sept. 30: Opening

- <u>2016:</u>
- Move to final buildings
- Optical fibre link

Astronomical Validation (AV) from a project to a science facility

- Last phase before first astronomical observations (shared risk, early science) [2014 -2015+]
- Goal 1: Tests on predefined sources to characterize the SRT astronomical performance in all standard observing modes; identification of technical problems and/or limitations
- Goal 2: maximization of science exploitation since first light (science-driven HW modifications; prioritization of AV activities)
- Goal 3: Transforming the SRT into a real Observatory (HW/SW development, observing/analysis tools, cook-book, etc.);

Team AV

• PS: Isabella Prandoni

Co-PS:

Matteo Murgia, Andrea Tarchi, Sandro Orfei, Gianni Comoretto

~40 members

covering various technical/astronomical expertises (Bo/Med; Cagliari; Arcetri)

- \rightarrow Pulsar; Galactic & Extra-galactic, etc.
- \rightarrow Continuum, Line, Mapping, VLBI, etc.
- \rightarrow SW, Receivers, Backends, etc.

[interface with commisioning team]

ASTROPHYSICAL VALIDATION TEAM The SRT astrophysical validation team

- 1. Isabella Prandoni, i.prandoni@ira.inaf.it (Project Scientist)
- 2. Nichi D'Amico, damico@oa-cagliari.inaf.it (Project Director)
- 3. Alessandro Orfei, a.orfei@ira.inaf.it
- 4. Andrea Orlati, a.orlati@ira.inaf.it
- 5. Simona Righini, s.righini@ira.inaf.it
- 6. Roberto Ricci, r.ricci@ira.inaf.it
- 7. Gianni Comoretto, comore@arcetri.inaf.it
- 8. Matteo Murgia, matteo@oa-cagliari.inaf.it
- 9. Andrea Tarchi, atarchi@oa-cagliari.inaf.it
- 10. Sergio Poppi, spoppi@oa-cagliari.inaf.it
- 11. Alberto Pellizzoni, apellizz@oa-cagliari.inaf.it
- 12. Federica Govoni, fgovoni@oa-cagliari.inaf.it
- 13. Tonino Pisanu, tpisanu@oa-cagliari.inaf.it
- 14. Andrea Melis, amelis@oa-cagliari.inaf.it
- 15. Carlo Migoni, cmigoni@oa-cagliari.inaf.it
- 16. Silvia Casu, silvia@oa-cagliari.inaf.it
- 17. Marta Burgay, burgay@oa-cagliari.inaf.it
- 18. Alessio Trois, atrois@oa-cagliari.inaf.it
- 19. Antonietta Fara, fara@oa-cagliari.inaf.it
- 20. Paola Castangia, pcastang@oa-cagliari.inaf.it
- 21. Valentina Vacca, vvacca@oa-cagliari.inaf.it
- 22. Maria Noemi Iacolina, iacolina@oa-cagliari.inaf.it
- 23. Ignazio Porceddu, ignazio.porceddu@inaf.it
- 24. Pietro Bolli, pbolli@oa-cagliari.inaf.it
- 25. Alessandro Corongiu, corongiu@oa-cagliari.inaf.it
- 26. Alessandra Zanichelli, a.zanichelli@ira.inaf.it
- 27. Carlo Stanghellini, cstan@ira.inaf.it
- 28. Francesco Nasyr, nasyr@oa-cagliari.inaf.it
- 29. Delphine Perrodin, delphine@oa-cagliari.inaf.it
- 30. Francesco Gaudiomonte, fgaudiom@oa-cagliari.inaf.it
- 31. Giuseppe Valente, valente@oa-cagliari.inaf.it
- 32. Elise Egron, egron@oa-cagliari.inaf.it
- 33. Caterina Tiburzi, ctiburzi@oa-cagliari.inaf.it
- 34. Alessandro Ridolfi, aridolfi@oa-cagliari.inaf.it
- 35. Fabrizio Massi, fmassi@arcetri.astro.it
- 36. Raimondo Concu, rconcu@oa-cagliari.inaf.it
- 37. Marco bartolini, bartolini@ira.inaf.it
- 38. Marco Buttu, mbuttu@oa-cagliari.inaf.it
- 39. Daria Guidetti, d.guidetti@ira.inaf.it

AV - SW DEVELOPMENT

- RFI detection/excision
- Ricci et al.
- Format Converter FITS to CLASS
- Trois et al.
- Cross Scan Quick Look/Reduction Righini et al.
- Single Dish Imager Pellizzoni et al. SD multi-feed Imager (OTF)

Single Dish – AV Basic Tests

11/12/15

Elevation [deg]

Single Dish – AV Basic Tests

B) Band Limited Noise for TP:

Measured/Expected noise vs sampling interval

2 different time window: 2sec; 4 sec

[Expected noise ~ radiometer formula]

250 MHz Band 680 MHz Band 1200 MHz Bandwidth

→ Ratio up to ≥1.5 for largest bandwidth due to increasing RFI

Credits: Righini

Single Dish – AV Basic Tests

Single Dish – AV Advanced Tests

C-Band BEAM PATTERN vs Elevation

Credits:

M. Murgia, F. Govoni, S.Poppi, V.Vacca, P.Castangia, A.Tarchi

11/12/15

The SRT: INTERNATIONAL CONTEXT

•Single-Dish Operations: Competitors

-60/100m class radio telescopes: SRT, JB (70m), Eff (100m), GBT(100m), Parkes (64m)

- Dishes with active surface: SRT, Effelsberg, GBT

+ Yebes (40m), Noto (32m), IRAM (30m), Onsala (25m), Metshaovi (14m)

DBBC2 + Mark5C

SRT as part of VLBI Networks

EVN (14 Institutes):

- Large collecting area -> Sensitivity Increment (especially for Space VLBI)
- Geographical position \rightarrow improve UV coverage \rightarrow improve image fidelity
- Active surface → high efficiency at high frequency → mm-VLBI
- SRT, Noto, Medicina → Italian VLBI
- optical fiber link → eVLBI

EXPRes network RadioAstron Frequency band [GHz] 18 - 25 0,327 1,665 4.83 Orbital Period: 7-10 gg Ang. Res. At 350.000 Apogee : 310.000-390.00 km 540 106 37 7 - 10 km baseline [microas] Perigee: 300-7.000 km

DBBC2 + Mark5C

SRT &VLBI – Milestones

2013, Oct. 10 \rightarrow First Italian VLBI test: Medicina-Noto-SRT + SW correlator

I. Prandoni

L/P Dual Band

+ ROACH1

PULSAR STUDIES WITH SRT

•<u>Dual band</u> 20+90 cm receiver → unique capability to remove interstellar medium effects

•LEAP: Large European Array for Pulsars

(Westerbork, JB, Effelsberg, Nancay, SRT)

 Phased Array: 'Coherent' combination of the 5 major European telescopes
 → most sensitive telescope at L-band for timing (~200m, ie ~ Areciboilluminated dish, but able to track sources, and observe larger region of sky)

<u>Ultra-precision Pulsar Timing</u>: Searching for signature of space-time perturbations in pulsar timing residuals

Leader experiment for detecting GW from cosmological background or from local SMBH in merging systems

Courtesy A. Possenti

L/P Band

SRT & LEAP – AV Milestones

+ ROACH1

2013, July 27th → First LEAP session including SRT
5 telescopes - ROACH installed – only 1 band (16 MHz)
→ Only brightest pulsars
Goal: 128 MHz → LEAP; 500 MHz → EPTA

Feb. 2014: 8-node cluster available

31/03/14: First LEAP session with 8 bands (128 MHz)!

→ <u>SRT participate to all monthly 25^h LEAP sessions (nearly all msec pulsars detected)</u>

•May 9, 2014: Correlation between SRT and Westerbork •Sept. 2014: data acquisition completely automatized (SEADAS+NURAGHE)

•In progress: 5 Telescope LEAP coherent addition P-band validation

Main Issue: Strong RFIs in L-band \rightarrow Site + nearby radar (RFI up to 1460 in 1 pol)

I. Prandoi

J1022+1001 1022.ar.pazi 5×10⁻ Freq: 1436.000 MHz BW: 16.000 Length: 3620.721 S/N: 37.040 ROACH1 J1022+1001 15 min, 1.436 GHz BW=16 MHz S/N=37 Flux 5×10⁻⁴ 5×10 0.2 0.4 0.6 0.8 Pulse Phase з "add.noac.0-1" u 5:10 Fringe SRT-Wb 2 ringe-phase (rad) -2 1412 1414 1416 1424 1418 1422 1426 1428 1420 Frequency (MHz) Perrodin, Concu, Melis, & Pulsar Group @ OAC

11/12/15

L/P-Band DFB

AV – PULSARS: SD (DFB)

Nov. 2015: Implementation of Winking Calibration Mark at DFB \rightarrow accurate flux calibration

11/12/15

18-26 GHz

K BAND SURVEYS

Multi-feed

- Pulsars:

- Searching Recycled/msec pulsars in Galactic Center
 - → chance to reveal binary systems

msec pulsar/BH \rightarrow gravitational tests

- Continuum Surveys:
 - free-free emission in Galactic Plane

→ Ultra-Compact HII Regions

- Deep Fields [SRT confusion limit: 50-70 µJy (rms)]

 \rightarrow adding information @ \geq 10 GHz \rightarrow AGN/ SF thermal emission

- Line Surveys:

- Searching maser H₂O in Local Group
 - → Distance & 3D motions → Dark Matter & Cosmology
- Unbiased Mapping NH_{3in} galactic Plane

ightarrow Astrochemistry in SF Regions

18-26 GHz

Multi-feed

NH₃(1,1) and (2,2) at ~23.7 GHz + hyperfine transitions [τ] → Temp. of molecular clouds

In sinergy with JCMT, Herschel/ Spitzer, APEX, ALMA → Localization pre-stellar cores

Study physical and chemical properties of various components: gas, dust, stars

SPECTROSCOPY @ SRT & Line Surveys @ K-band

Example: NH₃ Unbiased Mapping in star forming regions

Courtesy P. Caselli & J. Brand

18-26 GHz

Multi-feed

Pilot Survey with K-band Multi-feed @ Medicina

Pre-commissioning + AV @ Medicina in 2010-11 (Multi-feed + TP + ESCS OTF mode)
Pilot survey North Polar Cap (~900 deg² @ Decl. +72.3°)
~70 RS with S>100 mJy

•Precursor: Implementation of derotator

Righini et al. 2012 Ricci et al. 2013

18-26 GHz Multi-feed

TP – Gain Curves

4 sub-bands centered @ 18.3 - 22.0 - 23.7 - 25.5 GHz

I. Prandoni

SRT – Imaging Performance

C-band - SNR 3C157/IC 443: TP + SDI SW → DR~ few 100s, Good Image Fidelity

VLA+Arecibo 1.4 GHz 40" res. + 3.9' res. ~6.3 hours

Lee et al. 2008

VLA 330 MHz 64"x74" res. ~1 hour

Hewitt et al. 2006

SRT 6.9 GH7 - TP 2.7' res. ~13 hours

SDI SW: Baseline subtraction + RFI flagging + Calibration **Credits SDI Team**: A.Pellizzoni, E.Egron, N.Iacolina, S.Righini, A.Trois, V.Vacca 11/12/15 I. Prandoni

AV: June 2014

SRT – High Dynamic Range Imaging

Observations with TP (C Band) to test/debug beam deconvolution procedures (based on Imaging SW SCUBE (Govoni et al.). 300 1x1 deg² maps of 3C147

•PRECURSOR: deep beam pattern measurements at fine El. steps

rms noise $\sim 1.2 \text{ mJy/b}$

Beam reconstruction
& shapelet modeling
← DR<500

→ DR=13375

3C147 Image: Dirty/Cleaned

rms noise ~ 0.4 mJy/b

Credits:11/12/15M. Murgia, F. Govoni, S.Poppi, V.Vaccad RiCastangia, A.Tarchi

SRT – HDR Imaging

W3(OH) – TP C-band – SCUBE Imaging SW → High DR & Image Fidelity: W3(OH) 8.9GHz Feb16,2002 DR~9000

SRT

Credits: M. Murgia, F. Govoni, S.Poppi, V.Vacca, P.Castangia, A.Tarchi, F. Loi

I. Prandoni

SRT – Spectroscopy with XARCOS

Four simultaneous sub-bands with increasing spectral resolution

SRT – Spectroscopy with XARCOS

SUMMARY

SRT station not fully staffed yet. **BUT** we are gradually moving into regular operations:

VLBI/LEAP Operational (early 2015)

(see Prandoni et al. 2015)

- ToO → limited time available as DDT since May 2013 (see Buttu et al. 2013)
- Single-Dish Operations & 1st generation backends largely validated: TP, XARCOS and DFB/ROACH for pulsars

→ <u>A Call for proposals (shared risk/ES) is expected later this year</u>

- NB: Period of stop planned for the second half of next year:
 - \rightarrow refurbishment of the active surface actuator boxes
 - \rightarrow implementation of optical fibre [eVLBI]
 - → moving instrumentation and control room to final destination buildings [full validation of L/P bands, incl spectro-polarimetry with ROACH]

Grazie!

