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Abstract

Context. X ray clusters are conventionally divided into two classes:“cool core” (CC) and “non-cool core” (NCC) objects, on the basis
of the observational properties of their central regions. Recent results have shown that the cluster population is bimodal (Cavagnolo
et al. 2009).
Aims. We want to understand whether the observed distribution of clusters is due to a primordial division into two distinct classes or
rather to differences in the way these systems evolve across cosmic time.
Methods. We systematically search the ICM of NCC clusters in a subsample of the B55 flux limited sample of clusters for regions
which have some characteristics typical of cool cores, namely low entropy gas and high metal abundance.
Results. We find that most NCC clusters in our sample host regions reminiscent of CC, i. e. characterized by relative low entropy gas
(albeit not as low as in CC systems) and a metal abundance excess. We have dubbed these structures “cool core remnants”, since we
interpret them as the remains of a cool core after a heating event (AGN giant outbursts in a few cases and more commonly mergers).
We infer that most NCC clusters have undergone a cool core phase during their life. The fact that most cool core remnants are found
in dynamically active objects provides strong support to scenarios where cluster core properties are not fixed “ab initio” but evolve
across cosmic time.
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1. Introduction

Galaxy clusters are often divided by X-ray astronomers intotwo
classes: “cool core”(CC) and “non-cool core” (NCC) clusters.
The former are characterized by a set of properties: a promi-
nent surface brightness peak, usually roughly coincident with
the center of the large scale X-ray isophotes and with the po-
sition of the brightest central galaxy (BCG), associated with a
decrease of the temperature profile in the inner regions and a
positive gradient of the metal abundance profile. In the central
regions of these clusters, the cooling time is significantlysmaller
than the Hubble time, but the radiative losses are balanced by
some form of heating, which in the currently prevailing scenario
is attributed to the central AGN, which prevents the gas from
cooling indefinitely and flowing inward. NCC clusters are char-
acterized by the lack of these observational features. Several in-
dicators based on these observational characteristics have been
proposed to classify clusters into these categories: e. g. tempera-
ture drop (Sanderson et al. 2006, 2009b), cooling time (Bauer
et al. 2005), a composition of these two criteria (Dunn et al.
2005; Dunn & Fabian 2008), the slope of the gas density pro-
file at a given radius (Vikhlinin et al. 2007) and core entropy
(Cavagnolo et al. 2009). In a recent paper (Leccardi et al. 2009,
hereafter Paper I), we suggested a robust indicator to classify
clusters (see also Sect. 3), based on pseudo-entropy gradients.
The classification based on this indicator improves the tradi-
tional classification scheme based on the temperature drop and
is essentially equivalent to classifications based on the cooling
time. Increasing attention has been devoted to the statistics of
CC, both in the local Universe and at higher redshifts. Whilethe
precise results depend strongly on the indicator used to classify
clusters, the fraction of CC is considered to be about 50% of the
clusters population. There are some indication that the cluster

population is bimodal (Cavagnolo et al. 2009), but there arealso
some intermediate objects which are not easily classified (Paper
I).
One of the open questions in the study of galaxy clusters con-
cerns the origin of this distribution. The original model which
prevailed for a long time assumed that the CC state was a sort
of “natural state” for the clusters, and the observational fea-
tures were explained within the context of the old “cooling flow”
model: radiation losses cause the gas in the centers of theseclus-
ters to cool and to flow inward. Clusters were supposed to livein
this state until disturbed by a “merger”. Indeed, mergers are very
energetic events that can shock-heat (Burns et al. 1997) andmix
the ICM (Gómez et al. 2002; Ritchie & Thomas 2002): through
these processes they were supposed to efficiently destroy cool-
ing flows. After the mergers, clusters were supposed to relaxand
go back to the cooling flow state in a sort of cyclical evolution.
With the fall of the “cooling flow” brought about by theXMM-
Newton andChandra observations (e. g. Peterson et al. 2001 and
Molendi & Pizzolato 2001), doubts were cast also on the inter-
pretation of mergers as the dominant mechanism which could
transform CC clusters into NCC. More generally speaking, the
question arose whether the observed distribution of clusters was
due to a primordial division into the two classes or rather toevo-
lutionary differences during the history of the clusters.
McCarthy et al. (2004, 2008) noticed the absence of systems that
resemble observed NCC clusters in cosmological simulations,
suggesting that mergers could not be the origin of the cluster dis-
tribution. They proposed that early episodes of non-gravitational
pre-heating may explain the dichotomy; they envisage a scenario
in which NCC clusters have been pre-heated to levels greater
than∼ 300 keV cm2 and do not have enough time to develop a
cool core, while CC clusters have been pre-heated to lower lev-
els and need an additional source of present-day heating to off-
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set cooling. With this model, McCarthy et al. (2008) explained
observed entropy and gas densityChandra profiles for CC and
ROSAT gas density profiles for NCC. O’Hara et al. (2006) sup-
ported the primordial model, showing that the scatter in scaling
relations is larger for CC clusters than for NCC, suggestingthat
CC are not more relaxed than NCC systems. Moreover the two-
body idealized simulations by Poole et al. (2008) showed that
mergers cannot produce extended “warm” cores and cannot de-
stroy metal abundance gradients.
However, the evolutionary “merger” scenario has been continu-
ously supported by observations. For instance, Sanderson et al.
(2006) compared temperature and cooling time profiles of a sam-
ple of clusters observed byChandra with indicators of merger
activity and suggested that mergers may be the primary factor
in preventing the formation of CCs. More recently, Sanderson
et al. (2009a) have shown in a large sample of objects that theX-
ray/BCG projected offset correlates with the gas density profile,
which can be considered to be an indicator of the CC state. If the
X-ray/BCG offset “measures” the dynamical state of the cluster,
this result implies that the cool core strengths diminishesin more
dynamically disturbed clusters. Another indicator of dynamical
activity is the presence of extended radio halos on Mpc scales,
whose origin is likely related to turbulent acceleration driven by
mergers (Ferrari et al. 2008 for a recent review). None of the
clusters which are found to host a radio halo (on Mpc scales) in
a complete survey (Venturi et al. 2008; Brunetti et al. 2009)can
be classified as a CC object. These relations are indeed expected
if mergers can efficiently destroy cool cores.
An interesting model has been proposed by Motl et al. (2004),
who suggested a double role for mergers in the cluster forma-
tion process: while they can shock-heat the ICM, they also ef-
ficiently mix the ICM and participate in the formation of CCs
by providing cool gas. By analyzing simulated temperature and
surface brightness maps, they find that observational signatures
of a cool core may disappear after mergers, but that cool gas
remains in the systems at all time. Indeed, mergers are compli-
cated phenomena during which the ICM of the interacting ob-
jects is mixed. Also the simulations by Ascasibar & Markevitch
(2006) on the formation of cold fronts showed that an interact-
ing subcluster may donate its cool gas to the main cluster and
that, during the merging processes, many hydrodynamic effects
contribute to the mixing of the gas.
Recently, we found an unexpected and interesting result from
the analysis of the metalicity profiles in a large sample of clus-
ters (Paper I): some clusters that cannot be classified as CC show
a metal abundance excess at their center, without a significant
temperature decline or an X-ray brightness excess. We suggested
that at least some NCC clusters have spent part of their livesas
CC objects and that consequently a complete primordial separa-
tion of the two classes of objects cannot be the case.
However, further analysis is needed on this result to use it to
gain insight on the origin of the distribution of CC-NCC ob-
jects. We would like to characterize these regions better and
to know if and to what extent they are common in the popula-
tion of NCC objects. The results in Paper I as well as those de-
scribed above comparing observations and simulation, are based
on “uni-dimensional” properties (entropy and metal abundance
profiles). Indeed, global properties and unidimensional profiles
are easy to derive and it is possible to compare them quantita-
tively, but they inevitably result in a loss of information.Many
thermodynamic maps are now available in the literature, which
show that spherical symmetry is not generally fulfilled in clus-
ters, and which reveal the presence of regions with “anomalous”
characteristics outside of the cores (e.g Sun et al. 2002; Rossetti

et al. 2007 and many others ).
In this paper, we present a systematic two-dimensional analysis
of a sample of 35 clusters observed withXMM-Newton, to look
for and characterize regions with a significant metal excessin
NCC clusters, like the ones found in Paper I. The outline of the
paper is as follows: in Sect. 2 we describe the sample and the
data analysis, in Sect. 3 we discuss the classification schemes
and we define “CC remnants” in Sect. 4. We interpret our results
in Sect. 5, and we summarize our findings in Sect. 6. Quoted con-
fidence intervals are 68% for one interesting parameter unless
otherwise stated. All results are given assuming aΛCDM cos-
mology withΩm = 0.3,ΩΛ = 0.7, andH0 = 70 km s−1 Mpc−1.

2. Data analysis

2.1. The sample

The starting point of the sample of galaxy clusters described in
this paper is the “B55” X-ray flux limited sample (Edge et al.
1990). In order to have a significant coverage of the cluster
within EPIC field of view, we have eliminated the nearest
clusters and considered only those with redshiftz > 0.03. Then
we analyzed all publicXMM-Newton observations, including
mosaics and multiple observations, as described in Sect. 2.2.
We discarded observations where, after soft proton cleaning,
the effective exposure time (MOS1+MOS2+ pn) is lower than
25 ks, except in the case of mosaics where observations with
texp < 25 ks have been used for images but not for spectral
analysis.
The list of the clusters which remained after our selection cri-
teria is given in Table 1. A644, A2244 have not been observed
by XMM-Newton, while all the observations of A3391, A1736,
A2142, A2063 and A1651 are badly contaminated by soft
protons (texp < 25 ks) and have been discarded. The cluster
Cygnus A has been discarded in a second phase of the analysis
because of the presence of the radio galaxy QSO B1957+ 405,
featuring large hotspots well detected in X-rays, which cannot
be easily subtracted from the core spectrum.

2.2. General data reduction

We retrieve Observation Data Files (ODF) from theXMM-
Newton archive and process them with SAS software version
7.0. The event files produced by this standard analysis technique
are then cleaned to remove soft proton flares with a double fil-
tering process. As a first step, we produce the light curve in a
hard energy band (10-12 keV) and remove all time periods with
count rates exceeding a fixed threshold 0.025 cts/s for the MOS
detectors and 0.050 cts/s for the pn. This procedure allows the
removal of most flares, but softer flares may survive. In the sec-
ond step, we apply aσ clipping technique to the histogram ob-
tained from the light curve in the 2− 5 keV energy range. For
each observation, we have calculated the “in over out ratio”, RSB
(De Luca & Molendi 2004), to identify observations badly con-
taminated by a quiescent soft proton component. As outlinedin
Paper I, the ratio has been calculated in an external annulusat
E > 9 keV to reduce the contribution of the cluster emission
which fills all the FOV, especially for the nearest objects. We
have discarded only one observation (and therefore the cluster
A2065) where the RSB of the two MOS is larger than 2.0. After
soft proton cleaning we filter the event files according to pattern
and flag criteria, and we remove by sight brightest point sources.
Since we are mainly interested in characterizing the thermody-
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namic properties of the ICM in the central and brightest regions
of the clusters of our sample, advanced procedures to treat the
background (Leccardi & Molendi 2008b) are not strictly nec-
essary. This is also the reason why we could discard only badly
contaminated observations with RSB > 2.0. As background event
files, we merge nine “blank sky” field observations, as is com-
monly done, and we extract images and spectra for the back-
ground in the same way than for the source observations. We
calculate a normalization factorQ for each cluster observation
to take into account possible temporal variations of the instru-
mental background. The normalization factor is the count rate
ratio between source and background observations in an external
ring (10′ − 12′) beyond 9 keV. Background images and spectra
are scaled byQ before the subtraction from source images and
spectra.

2.3. Two-dimensional analysis

For all the clusters in our sample we prepared two dimensional
maps of the main thermodynamic quantities, starting from EPIC
images. To do this we have used a modified version of the
adaptive binning+ broad band fitting technique described in
Rossetti et al. (2007), where we have substituted the Cappellari
& Copin (2003) adaptive binning algorithm with the weighted
Voronoi tessellation by Diehl & Statler 2006 (Rossetti 2006).
Especially in clusters undergoing major mergers, where there is
no spherical symmetry, maps are a fundamental tool to select
interesting regions for a proper spectral analysis, which is nec-
essary to complement the thermodynamical information with
the chemical information. Indeed, a “blind” spectral analysis in
concentric annuli would not allow to detect interesting features
in some of our clusters.

2.4. One-dimensional analysis

2.4.1. Profiles

As a first step, we have performed spectral extraction and anal-
ysis in concentric annuli. As discussed in Sect. 2.3, the main
drawback of this technique is that the assumption of spherical
symmetry is not always fulfilled in our clusters, and in some
cases even the choice of the center can have a strong impact
on the observed properties. Therefore we have used the thermo-
dynamic maps (Sect. 2.3) to identify those clusters where the
deviations from the spherical symmetry are larger, and we have
decided not to perform radial analysis in four well known merg-
ing objects: A3667 (Briel et al. 2004), A2256 (Sun et al. 2002),
A754 (Henry et al. 2004) and A3266 (Finoguenov et al. 2006)
For the remaining clusters of the sample, where we do not ob-
serve large displacements between the surface brightness peak
and the entropy minimum, we select as center of symmetry the
surface brightness peak, even if the large scale isophotes have
another center. This allows a better description of the ICM prop-
erties in the more central regions of the clusters.
We extract spectra from annular regions around the selectedcen-
ter. For each instrument (MOS1, MOS2 and pn) and each region
we extract source and background spectra, and we generate an
effective area (ARF) file. Then we associate a redistribution ma-
trix file to the spectrum, appropriated for the instrument and, in
the pn case, for the position of the selected region in the detec-
tor.
We perform spectral fitting, using the XSPEC v11.3 package,
separately for each spectrum in the energy range 0.5-10 keV.We

use an absorbed mekal model (WABS*MEKAL), where theNH

is fixed to the input galactic value1 and the redshift is allowed to
vary in a small range (width≃ 0.02) around the nominal value.
Temperature, metal abundance2 and normalization are the free
parameters of the fit (following the prescription in Leccardi &
Molendi 2008a even negative values are allowed for the metal
abundance). Best fit results obtained from the three instruments
and from multiple observations of the same region are then aver-
aged together with a weighted mean. This enables us to produce
the projected temperature, metal abundance and surface bright-
ness profiles for each cluster.
Finally, we perform a deprojection of the profiles, following the
technique described in Ettori et al. (2002), to derive the three-
dimensional density and temperature profiles. Combining them,
we obtain entropy and cooling time profiles.

2.4.2. IN and OUT regions

In order to classify clusters according to the scheme described
in Paper I, we extracted spectra in an IN region and an OUT
reference region, whose radii are defined as a fixed fraction of
R180 (r < 0.05R180 and 0.05R180 < r < 0.2R180, respectively).
R180 has been calculated as

R180 = 1780

(

kT
5 keV

)1/2

h(z)−1 kpc, (1)

where h(z) = (Ωm(1 + z)3 + ΩΛ)1/2 and kT is the tempera-
ture of the cluster (Arnaud et al. 2005; Leccardi & Molendi
2008b). This mean temperature has been first calculated start-
ing from the profiles (eventually excluding the bins of the tem-
perature drop in CC clusters). After the extraction of the OUT
spectra, we have re-calculatedR180 using as mean temperature
Tout, i.e. the temperature obtained with a spectral fit in the re-
gion 0.05R180 < r < 0.2R180. We have then calculated the dif-
ferences between the new estimate of 0.2R180 and the old one.
Once converted in arcseconds, we have compared this difference
with the XMM-Newton point spread function: if the two esti-
mates of 0.2R180 differed by more than 15′′, we extracted again
spectra with the newR180 and iteratively repeated the procedure
until the differences were smaller than the PSF. In the case of the
four clusters without radial profiles (A754, A2256, A3266 and
A3667), the first estimate of the mean temperatures has been per-
formed directly from the temperature maps. The list of the final
Tout andR180 can be found in Table 2.
As discussed in Sect. 2.3, the choice of the center has been per-
formed starting from the thermodynamic maps. More specifi-
cally, we have selected as a center the position of the minimum
in the pseudo-entropy map. In most cases, the position of the
entropy minimum coincides with the surface brightness peak,
while in other clusters there is a significant displacement,but
usually smaller then the radius of the IN regions, with the ex-
ception of A3667. Moreover the choice of the position of the en-
tropy minimum as a center instead of the surface brightness peak
does not significantly alter the value of the pseudo entropy ratio,
except for the case of A3667. This is a well studied merging clus-
ter (Vikhlinin et al. 2001, Briel et al. 2004): the low-entropy gas
is concentrated at the position of a prominent cold front about
500 kpc SE from the surface brightness peak (see the Figure in
Appendix B).

1 The only exception is A478, where we found a difference of about
a factor of two between the galactic value (1.48 1021 cm2, Dickey &
Lockman) and the best fit value (2.7 1021 cm2)

2 For solar abundances we refer to Anders & Grevesse (1989)
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Figure 1: Comparison of temperature and emission measure ratios for
the clusters in our sample. The solid line represents the threshold used
to divide clusters between low entropy clusters and non-lowentropy
clusters, corresponding tosIN/sOUT = 0.45. The symbols and colors are
as in Table 1.

3. Classification schemes

As in Paper I we plot the temperature ratios (TIN/TOUT ) versus
the emission measure ratios (EMIN/EMOUT ) for the clusters of
our sample (Fig. 1), and we use pseudo-entropy ratios to divide
clusters into two classes (Table 2). We recall here the definition
of the pseudo-entropy ratio3:

σ ≡
sIN

sOUT
=

TIN

TOUT

(

EMIN

EMOUT

)−1/3

. (2)

The pseudo-entropy ratio is well correlated with the entropy
ratio (see Appendix A), and therefore it is a useful and easy-
to-calculate indicator of the variation of the physical three-
dimensional entropy in the cores of galaxy clusters.
As in Paper I, we compare our pseudo-entropy classification
with two alternative classification schemes, based on the core
properties (Col. 6 in Table 2) and on the dynamical state (Col.
7 in Table 2). More specifically, in Col. 6 we divide clusters
into three classes: cool core (CC), intermediate systems (INT)
and non-cool core (NCC), where CC feature a prominent surface
brightness peak and a temperature gradient, NCC possess neither
of these properties, while INT show only one of these observa-
tional features. In Col. 7 we divide clusters into two classes: ma-
jor mergers (MRG) and clusters showing no evidence of a ma-
jor mergers (NOM). We consider as evidence of a major merger
the presence of cluster-wide diffuse radio emission, multi peaked
velocity distribution of galaxies and significant irregularities on
the surface brightness and temperature maps. The lack of these
properties is not sufficient to state that an object is relaxed, this is
why we prefer to consider these objects as “not observed merg-
ers”. We refer to Paper I for more details on the classification
schemes and also for the necessary references.

3 X-ray astronomers usually define as “entropy” the quantityS ≡
TXn−2/3

e , wherene is the electronic density andTX the deprojected tem-
perature of the ICM (Ponman et al. 1999). In this paper, we usethe def-
inition of “pseudo-entropy”s ≡ T ∗ (EM)−1/3, whereT is the projected
temperature andEM is the emission measure, i. e. the normalization of
the MEKAL model in XSPEC per units of area (see Rossetti et al.2007
for more details).

Figure 2:Upper panel: Metal abundance profiles of LEC clusters as a
function of the pseudo-entropy ratio, in the regions of spectral extrac-
tion. The symbols and colors are as in Table 1.Lower panel: Mean
error weighted abundance profile for LEC clusters. Error bars show the
(small) error on the average, while dotted lines show the 1σ scatter
around the mean. In both panels, the horizontal dashed line indicates the
mean value of outer regions of galaxy clustersZ = 0.23Z⊙ (Leccardi
& Molendi 2008a) and the vertical dashed line indicates the selected
threshold ofs/sOUT under which all LEC cluster show a significant
metal abundance excess.

For the purposes of this paper, we are interested in separating
clusters with a low entropy core (LEC) from the rest, this is why
we have defined only one threshold to divide LEC from non-
LEC objects. With our selected threshold (sIN/sOUT = 0.45) we
can state that all LEC clusters are known to be CC and do not
show any evidence of a merger (except A85, probably undergo-
ing a merger in an early stage, which has not affected the obser-
vational properties of the core, see Paper I). Non-LEC clusters
are almost all non-cool core systems, and many of them show
significant indications of a major merger. As already discussed,
the fact that some of them do not show significant merger fea-
tures does not mean that they are relaxed.

4. Cool core remnants

The central regions of LEC clusters in our sample are charac-
terized by low-entropy (by definition), often accompanied by
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Table 2: Properties of the clusters in the sample: redshift (as derived from NED), “mean” temperature (i. e.TOUT ) andR180. Col. 5 lists the values
of sIN/sOUT we have derived, Col. 6 and Col. 7 list alternative classification schemes (see text). The first 14 entries are LEC clusters, while the
remaining are non-LEC.

Name Redshift Temperature R180 σ Core Cl. Dyn. Cl.
(keV) (Mpc)

A2199 0.0301 4.101± 0.025 1.58 0.4216± 0.0033 CC NOM
A496 0.0329 4.990± 0.038 1.75 0.3109± 0.0028 CC NOM∗

2A0335+096 0.035 3.649± 0.009 1.49 0.2644± 0.0007 CC NOM
A2052 0.035 2.884± 0.014 1.33 0.4274± 0.0028 CC NOM
A4059 0.047 3.968± 0.028 1.55 0.4394± 0.0044 CC NOM

Hydra A 0.054 3.413± 0.024 1.43 0.4138± 0.0040 CC NOM
A85 0.055 5.491± 0.048 1.82 0.3857± 0.0050 CC MRG

A1795 0.062 5.416± 0.026 1.80 0.3524± 0.0023 CC NOM
A3112 0.075 4.319± 0.033 1.59 0.3855± 0.0038 CC NOM
A2597 0.085 3.491± 0.018 1.43 0.3568± 0.0026 CC NOM
A478 0.088 7.057± 0.034 2.03 0.3706± 0.0024 CC NOM∗

PKS0745-191 0.103 7.765± 0.12 2.11 0.2957± 0.0056 CC NOM∗

A2204 0.152 7.412± 0.092 2.01 0.2972± 0.0046 CC NOM
A2029 0.077 6.173± 0.056 1.90 0.4505± 0.0057 CC NOM
A4038 0.030 2.957± 0.015 1.35 0.5093± 0.0037 INT NOM
A576 0.039 3.777± 0.044 1.52 0.6226± 0.0135 INT MRG
A3571 0.039 6.253± 0.045 1.95 0.6220± 0.0078 INT NOM
A119 0.044 6.032± 0.082 1.92 0.7621± 0.0279 NCC MRG

MKW3s 0.045 3.325± 0.018 1.42 0.4860± 0.0039 CC NOM
A1644 0.047 4.156± 0.056 1.59 0.5318± 0.0132 INT NOM
A3558 0.048 5.221± 0.025 1.78 0.6155± 0.0057 INT NOM
A3562 0.048 4.344± 0.032 1.62 0.6089± 0.0083 NCC MRG

Triangulum Australis 0.051 9.224± 0.095 2.36 0.6845± 0.0164 NCC NOM
A3158 0.060 4.903± 0.042 1.71 0.7488± 0.0153 NCC MRG
A399 0.072 5.984± 0.109 1.88 0.7086± 0.0319 NCC MRG
A401 0.074 7.268± 0.084 2.07 0.7028± 0.0212 NCC MRG
A2255 0.081 6.197± 0.154 1.91 0.8853± 0.0714 NCC MRG
A1650 0.084 5.427± 0.0539 1.78 0.5323± 0.0089 INT NOM
A1689 0.183 8.612± 0.102 2.13 0.4724± 0.0089 INT NOM
A2319 0.056 8.962± 0.091 2.32 0.5643± 0.0113 NCC MRG
A3532 0.055 4.839± 0.104 1.70 0.7285± 0.0336 INT NOM∗

A3667 0.056 5.461± 0.029 1.81 0.6378± 0.0078 NCC MRG∗

A754 0.054 8.544± 0.102 2.27 0.5289± 0.0120 NCC MRG
A3266 0.055 7.351± 0.081 2.10 0.6772± 0.0170 NCC MRG∗

A2256 0.057 5.709± 0.0763 1.85 0.6300± 0.0197 NCC MRG∗

Notes ∗ Properties and the references for the clusters not includedin the sample in Paper I. A496: CC and no evidence for a major merger (Tamura
et al. 2001 and references therein). A478: CC and no evidencefor a major merger (Sanderson et al. 2005 and references therein). PKS0745-
191: CC and no evidence for a major merger (Chen et al. 2003 andreferences therein). A3532: INT (moderate temperature drop) and no
evidence for a major merger (the indications of optical substructures, Bardelli et al. 2000, are insufficient to claim a major merger). A3667:
NCC and MRG (evidence of radio relics Rottgering et al. 1997,optical substructures Owers et al. 2009, and disturbed thermodynamical maps
Briel et al. 2004; Vikhlinin et al. 2001). A3266: NCC and MRG (even if extended radio emission has not been detected, Buote2001, there
are evidences of optical substructures, Quintana et al. 1996, and disturbed thermodynamical maps Finoguenov et al. 2006). A2256: NCC and
MRG (radio halo and relic, Kim 1999, optical substructures,Berrington et al. 2002, and disturbed temperature maps, Sunet al. 2002; Bourdin
& Mazzotta 2008).

a temperature decrease and a surface brightness excess. These
regions are also characterized by a high metal abundance: the
mean iron abundance in the cores of LEC clusters is signifi-
cantly larger than the typical value of outer regions of galaxy
clustersZ = 0.23Z⊙ (Leccardi & Molendi 2008a), even if
with a ≃ 20% scatter (De Grandi & Molendi 2009). It has
been shown that the excess abundance can be entirely produced
by the BCG galaxy that is invariably found in these systems
(De Grandi et al. 2004). At present, we are not aware of any
galaxy cluster with central regions characterized by a low en-
tropy gas without a metal abundance excess. A close relation
between entropy and metal abundance must consequently exist
and also generally speaking between the thermodynamics and
the chemical properties of the ICM. An example of this rela-
tion can be seen in Fig. 2, where we plot the metal abundance

radial profile as a function of the pseudo-entropy ratio for each
LEC cluster. The pseudo entropy ratio is similar to the one de-
fined in Equation 2, with the one difference that the tempera-
ture and emission measure of a given annulus replaceTIN and
EMIN , i. e. s(r)/sOUT = T (r)/TOUT ∗ (EM(r)/EMOUT )−1/3. In
the lower panel of Fig. 2, we plot the mean error weighted abun-
dance profile as a function of the pseudo-entropy ratio for the
LEC clusters and the oneσ scatter around the average of the
values. Low entropy ICM is characterized by a a significant
metal abundance excess, although the scatter is quite largefor
s/sout < 0.4. The plots show that all LEC clusters show a sig-
nificant metal abundance excess with respect to the outer mean
valueZ = 0.23Z⊙ (Leccardi & Molendi 2008a) in regions char-
acterized by a pseudo entropy ratio smaller than 0.8 (correspond-
ing to physical radiir . 0.07R180).
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In Paper I we found that some clusters without a low-entropy
core presented an unusually high metal abundance in their INre-
gion (as already discussed, such high abundances are typical of
LEC). We concluded that the most likely explanation for the high
central abundance of these anomalous non LEC systems was that
at some time in the past they hosted a cool core (i.e. low-entropy
gas and metal abundance excess) that was subsequently heated
up. Indeed, a heating event that does not completely disrupta
cool core will most likely leave behind a region characterized
by a high metalicity and by an entropy that, albeit not as low
as the one found in the central regions of LEC systems, will be
lower than that found in other regions of the cluster. We em-
phasize that metals are reliable markers of the ICM in the sense
that once they have polluted a given region of a cluster, the time
scale over which they will diffuse is comparable to the Hubble
time (Sarazin 1988). Thus metals trace the ICM where they have
been injected. The presence of these regions has also been pre-
dicted by the simulations of Motl et al. (2004), who suggested
that even if the observational cool core signature may disappear,
cool gas (and we may add “low-entropy and metal rich gas”) re-
mains in the merging systems at all times.
Since in LEC clusters a metal abundance excess is invariablyas-
sociated with ICM with a low pseudo-entropy, we have system-
atically selected the regions with the lowest pseudo-entropy ra-
tio in non-LEC systems, with the aim of finding regions possibly
characterized by a high metalicity. In practice we have prepared
two-dimensional pseudo-entropy ratio maps for the 21 non-LEC
clusters of our sample , by dividing the pseudo-entropy maps
for the pseudo-entropy in the OUT region derived with spectral
analysis. In these maps we have identified regions characterized
by a s/sOUT < 0.8 (as shown in Fig. 2 all LEC clusters show
a metal abundance excess in regions with entropy ratio< 0.8),
and we have extracted and analyzed spectra in these regions (as
described in Sect. 2.4.1) to investigate their metalicity.Pseudo-
entropy ratio maps and figures of the selected regions are pro-
vided in Appendix B.
In all the objects (21) of our subsample of non-LEC clusters,we
find regions characterized by an entropy ratio smaller than 0.8.
In Fig. 3 we plot the metal abundance in these regions for all
the clusters (results are reported in Table 3). 12 objects (namely:
A1689, MKW3s, A4038, A1650, A1644, A3558, A576, A754,
A3562, A3571, A3667 and A2256) show a significant excess
(> 3σ c.l.) with respect to the reference valueZ = 0.23Z⊙
(Leccardi & Molendi 2008a). In the remaining nine clusters,
the metal abundance is statistically consistent with the refer-
ence value. Amongst these objects, we will consider as clusters
without metal abundance excess those where the metalicity is
measured with a good statistical accuracy, more specifically the
six clusters whereZ > 0.4Z⊙ can be excluded at a confidence
level> 2σ (A2319, A3266, A399, A401, A119 and A3158). We
will no more consider in this paper the three objects (A3532,
Triangulum Australis and A2255) where the error bars on the
metal abundance are too large to discriminate between the two
classes (the observations of these clusters are the shortest of our
sample, see Table 1).
The most likely interpretation is that the low entropy high Zre-
gions found in many of our non-LEC systems are what remains
of a cool core after a heating event. We dub these structures “cool
core remnants”4, a more detailed discussion of how they formed
and of alternative scenarios is provided in Sect. 5.

4 The term “remnant of cool cores” has been recently used by Fusco-
Femiano et al. (2009) to describe structures similar to the ones we detect
albeit without information on the metal abundance.

Figure 3: Metal abundance in the regions selected for spectral analysis
for the 21 non-LEC objects in the sample (upper panel) and as afunction
of the pseudo-entropy ratio in the regions (lower panel). The horizontal
line represents the reference value for the metalicity of outer regions of
galaxy clustersZ = 0.23Z⊙ (Leccardi & Molendi 2008a). Symbols and
colors are as in Table 1.

In the lower panel of Fig. 3 we plot the metal abundance as
a function of the pseudo entropy ratios/sOUT where s is the
pseudo-entropy in the region used for spectral analysis. Itis
worth noting that the clusters with no indication of a signifi-
cant metal abundance excess are those where the selected re-
gions show the highests/sOUT , with the notable exception of
A2319 (red filled square).
To better characterize the systems in our sample, we have com-
pared the entropy maps with the galaxy distribution and more
specifically the low-entropy regions with the position of the
BCG (Col. 3 in Table 3 and Figures in Appendix B). The
name and positions of the BCGs are derived from the lit-
erature (Coziol et al. 2009; Lin & Mohr 2004; Gudehus &
Hegyi 1991; Postman & Lauer 1995). In 9/12 clusters with “CC
remnants” (namely A1650, MKW3s, A4038, A1644, A3558,
A3562, A3571, A1689 and A576) the BCGs are located in
the low-entropy high metal abundance regions. In A3667 and
A2256, the positions of the BCGs do not coincide with the “CC
remnant”, which is moreover not obviously associated to any
galaxy concentration (a more detailed study of the galaxy dis-
tribution in A3667 by Owers et al. 2009 found essentially the
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same results). In A754 the BCG is located∼ 700 kpc west of the
selected regions, but in the “CC remnant” we find the elliptical
galaxy 2MASSX J09091923-0941591 (see Figure in Appendix
B), which is the brightest member of the secondary peak in the
galaxy distribution (Fabricant et al. 1986). The position of this
secondary galaxy concentration, possibly associated to the CC
remnant, coincides also with a clump in the dark matter distri-
bution, as derived with gravitational lensing (Okabe & Umetsu
2008). For the non-LEC objects where we do not observe a sig-
nificant metalicity excess, we find that in 3/6 systems (A119,
A401 and A3158) the low entropy regions are not obviously as-
sociated to the BCGs. In the remaining 3 clusters (A399, A3266,
and A2319) the BCGs are located in the low-entropy regions
where we do not find evidence of a metal excess.
The main reason why we compared the position of CC remnants
with the galaxy distribution is that galaxies, and more specifi-
cally BCGs, are responsible for the metal abundance excess ob-
served in LEC clusters (De Grandi et al. 2004). However, the
galaxy distribution may also provide information on the shape
of the potential well of the clusters. Indeed, in relaxed clusters
BCGs are located at the bottom of the potential well and their
positions coincide with the centroid of the X-ray isophotesand
with the brightness peak of their host clusters. We have com-
pared the position of CC remnants with the position of the X-
ray peak, the centroid of X-ray isophotes and the position ofthe
BCGs (Figures in Appendix B). In most cases (namely A1650,
MKW3s, A4038, A1644, A1689, A576, A3562, and A3571),
these three points lie within the low entropy regions even ifthey
do not necessarily coincide with one another. However, in the re-
maining clusters one or more of these indicators is significantly
offset from the CC remnant. A754 and A2256 have a very dis-
turbed morphology, and the X-ray centroid does not coincide
with the CC remnant or with the BCG. In A3667 the centroid
roughly coincides with the brightness “peak” and the BCG, but
the CC remnant is offset by almost 500 kpc. It is apparent that in
these last three cases the low entropy metal rich regions arenot
in equilibrium within the cluster’s potential well, and therefore
we are observing a rapidly evolving situation.

5. Discussion

We have shown in Sect. 4 that 12 out of 21 non-LEC objects of
our sample host regions characterized by low entropy and high
metal abundance with respect to the mean values in the outer
ICM. Such conditions are usually verified in the cores of relaxed
LEC clusters, albeit with stronger gradients (i.e. the entropy of
the ICM reaches smaller values). We have dubbed these features
“cool core remnants”, since we have interpreted them as the
remains of a cool core after a “heating event”.
One may argue that these structures have evolved similarly but
independentely of LEC systems and that there is no need to trace
them back to known structures such as LEC. In the “primordial”
scenario, where non-LEC clusters started off with different
early conditions and are now slowly cooling to become LEC,
the low entropy and metal-rich regions could be interpretedas
“progenitors” of cool cores, rather than as remnants. However,
this scenario does not explain why in some cases these structures
are not in equilibrium within the potential well of their host
clusters and are not associated to the BCG or to a giant elliptical
galaxy. On the contrary, these issues are naturally addressed in
the “evolutionary” scenario if we consider the effects of mergers
both on the ICM and on the galaxy distribution (Sec. 5.2).
Moreover, we should pay attention to the fact that most of these
structures are found in clusters undergoing major mergers,i. e.

Table 3: Properties of low entropy regions. In col. 2 we list the metal
abundance in solar units, while in col. 3 we write “Y” if the BCG is
found in the low-entropy region and “N” if it is elsewhere. Clusters in
Italics are “AGN CC-remnant”, while clusters in bold type are “merger
CC-remnant” (Sect. 5 for these definitions).

Cluster Metal Abundance (solar) BCG
A1650 0.397± 0.021 Y

MKW3s 0.459± 0.009 Y
A4038 a 0.402± 0.008 Y
A1644 a 0.703± 0.049 Y
A1689 0.298± 0.017 Y
A3558 0.350± 0.010 Y
A576 0.520± 0.035 Y
A754 0.314± 0.021 Nb

A3562 0.471± 0.021 Y
A3571 0.349± 0.013 Y
A3667 0.327± 0.012 N
A2256 0.351± 0.038 N
A2319 0.242± 0.012 Y
A3266 0.232± 0.039 Y
A399 0.221± 0.053 Y
A401 0.262± 0.044 N
A3158 0.275± 0.077 N
A119 0.242± 0.078 N

A2255c 0.547± 0.224
A3532c 0.473± 0.095

Triangulum Australisc 0.369± 0.151

Notes: a Even if the central entropy of this cluster is within the reach
of AGN outbursts, it also shows some indications of on-goingin-
teraction and cannot be unambiguously associated to the “AGN
CC-remnant class” (see text).b The BCG 2MASSX J09083238-
0937470 is not associated to the CC-remnant, which however
coincides with the position of the elliptical galaxy 2MASSX
J09091923-0941591.c Due to the large indetermination of the
metal abundance estimate, we could not unambiguously detect or
exclude the presence of a metal abundance excess in this object.

in rapidly evolving objects. It is therefore necessary to trace
these transient structures back to an equilibrium state from
which they recently evolved.
Another possible objection is that the low-entropy structures
may not be embedded in the ICM but rather in groups along the
line of sight of the clusters. However, in the cases where the
cool core remnants are associated to the BCGs or to a galaxy
concentration (see Sect. 4), the redshifts of the galaxies are
consistent with the mean readshift of the clusters. In the cases
where there is no galaxy concentration obviously associated
to the low entropy regions, these features would have to be
interpreted as “gas-only” groups superposed on the line of sight.
In the interpretation of the low-entropy regions as CC remnants,
the “heating event” is responsible for smoothing the entropy
gradient of the cores of LEC clusters. We have identified two
possible mechanisms: interaction with the central AGN and
mergers.

5.1. CC remnants and central AGNs

Interactions between the central AGN and the ICM have been
observed withChandra andXMM-Newton in many LEC clus-
ters, and these interactions are now considered as the principal
mechanism preventing the formation of cooling flows (Peterson
& Fabian 2006 and references therein). In some cases, powerful
AGN outbursts may significantly increase the entropy content
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Figure 4: Error weighted metal abundance profile as a function of the
pseudo entropy ratios for LEC clusters (blue squares) and for the four
clusters with low central entropy (red circles). Dotted lines show the
oneσ scatter of the data.

of some galaxy clusters, transforming a low entropy core into
a non-LEC object. This is possible for systems where the core
entropy has been raised to a relatively small values0 ≃ (30−
50) keV cm2 (Voit & Donahue 2005). In our subsample of non-
LEC clusters according toChandra measurements (Cavagnolo
et al. 2009) only A1650, A4038, MKW3s and A1644 have a
core entropy smaller than 50 keV cm2 and are therefore within
the reach of powerful AGNs. AGN heating is the most plausi-
ble explanation for increasing the entropy in the cores of A1650
(Donahue et al. 2005; Voit & Donahue 2005) and for MKW3s
(radio lobes have been observed in this cluster, Giacintucci et al.
2006). We will consider these clusters as “AGN CC-remnants”.
The remaining two non-LEC clusters with a relatively low cen-
tral core entropy, A4038 and A1644, are controversial objects,
showing some indications of ongoing interactions contraryto
A1650 and MKW3s, which look relaxed at all wavelengths (see
Table 2 in Paper I). A4038 does not have a large temperature
drop at the center, but it has a low central cooling time. This
is why some authors classify it as a cool core (Peres et al. 1998)
and others as a non-cool core (Sanderson et al. 2006). In the opti-
cal, Burgett et al. (2004) found some indications of substructure
on large scales. A1644 is probably an advanced off-axis merger
with two subclumps clearly visible in the X-ray image and some
indications of on-going sloshing of the cool core of the main
subclump (Reiprich et al. 2004). The interpretation of A4038
and A1644 is not straightforward, since merging events could
have contributed to the heating of the cores (see Sect. 5.2).
In AGN CC remnants, the low entropy regions coincide with the
centers of the clusters and with the positions of the BCGs as
expected. In Fig. 4 we compare the error weighted mean metal
abundance profile of LEC clusters with the same profile for non-
LEC clusters withs0 < 50 keV cm2. In the innermost bins (low-
est entropy ratios), the mean profile of this class of clusters is
significantly larger than in LEC clusters, although the scatter is
large. This is consistent with a scenario where a localized heat-
ing in the inner regions of clusters has increased the entropy ratio
without substantially modifying the metal abundance, resulting
in ICM with enhanced metalicity for its entropy.

5.2. CC remnants and mergers

As shown in Sect. 5.1, eight out of 12 clusters featuring a
metal abundance excess have core entropies too large to be pro-
duced even by the most powerful AGN outbursts. Therefore, we
need another mechanism which could have produced the CC-
remnants that we observe today. The fact that most of these
clusters (namely A754, A3667, A2256, A3562 and A576) show
strong indications of a major merger suggests that merging could
provide the necessary heating to produce these features. The
indications are not as strong for the remaining three clusters
(A1689, A3558 and A3571; in Table 2 they are classified as “in-
termediate” and “no observed merger”). However, as shown in
the notes reported below, they all possess some peculiar features,
which suggest that they are undergoing some kind of interac-
tion. It is therefore natural to define this class of eight objects as
“merger CC remnants”.

Notes on A1689, A3558 and A3571

A1689 This cluster has been considered for a long time by X-
ray astronomers as an example of a relaxed cluster due to
its spherical shape (Figure in Appendix B) and very peaked
surface brightness profile (e. g. Peres et al. 1998). However,
analysis of the distribution of the velocities of the galaxies
showed two distinct peaks, suggesting a line of sight su-
perposition (Girardi & Mezzetti 2001). More recently, an
analysis ofXMM-Newton data by Andersson & Madejski
(2004) showed asymmetric temperature and redshift distri-
bution, which, combined with optical data, could suggest an
on-going merger.

A3558 Rossetti et al. (2007) classify this cluster as an inter-
mediate object, since it has some characteristics of CC, but
it also shows some indications of an on-going merger, like
asymmetry in the temperature and entropy distribution and
substructures in the 3-D galaxy distributions (Bardelli etal.
1998). Due to the very peculiar environment in which it is
located (the core of the Shapley Supercluster), these features
may be explained as the results of multiple minor mergers or
of a past off-axis major merger with A3562.

A3571 This cluster has a regular morphology in X-rays (Figure
in Appendix B), but we do not observe a temperature de-
crease in the center. This is why it is often classified as a “non
cool core” object (O’Hara et al. 2006; Sanderson et al. 2006).
On the basis of its radio and optical properties, Venturi et al.
(2002) suggest that this cluster is a late stage merger.

We recall here the main results concerning the position of
the merger CC remnants with respect to the centroid of X-ray
emission and to the galaxy distribution (Sect. 4 and Table 3).
In 5/8 clusters (namely A3558, A3562, A3571, A1689, A576)
the BCGs and the X-ray centroid are located in the low-entropy
high metal abundance regions. In A754 the CC remnant is asso-
ciated with a secondary peak in the galaxy distribution (with a
giant elliptical galaxy), but it is also offset from the position of
the large scale X-ray centroid. In A3667 and A2256 the CC rem-
nants are not obviously associated with any galaxy concentration
and they are not found at the centers of their host clusters (see
figures in Appendix B). These different results do not contra-
dict our interpretation since the effect of the merging processes
both on the collisional ICM and on the non-collisional dark mat-
ter and galaxies depends on many parameters such as the merger
state, the mass-ratios and the impact parameter. Therefore, while
in A3667 and A2256 the low entropy and high metal abundance
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Figure 5: Error weighted metal abundance profile as a function of the
pseudo entropy ratios for LEC clusters (blue squares) and for the clus-
ters with merger CC remnants (red circles). Dotted lines show the one
σ scatter of the data.

gas may have completely decoupled from its galaxy concentra-
tion and possibly dark matter halo (such as in the “bullett clus-
ter”, Clowe et al. 2006), in A3558, A3562, A3571, A1689, A576
and A754 this gas has not been completely displaced from its
gravitational potential well. Another possibility is thatwe are
currently observing a late stage of a merger in the latter systems,
where the low entropy high metal abundance gas is slowly mov-
ing back to the center of the cluster.
Two main mechanisms can contribute to the formation of a
CC remnant during a merger event: shock-heating and mix-
ing. Mergers are expected to drive moderately supersonic shock
waves in the ICM, which, being irreversible changes, increase
the entropy of the system. If one of the merging subclusters had
a CC before the merging event, shock-heating may significantly
increase the entropy of the core, but in some cases this heat-
ing may not be sufficient to reach the entropy values observed in
some non-LEC clusters. With a very simplified calculation based
on Rainkine-Hugoniot jump conditions, we estimate that shocks
with a Mach number of 1− 3 can increase the mean entropy in
the cores only to a factor of up to 1.8. Mergers also drive motions
in the ICM in which low entropy metal-rich gas may be put in
contact with high-entropy metal poor ICM. The mean entropy of
the resulting mixed ICM will be lower than the ambient entropy
(but higher than the typical core entropy), and its metal content
could be larger than in the ambient gas. However, since thereis
a significant spread in the metal abundance values of cool cores,
mixing may also efficiently disrupt small abundance gradients.
We recall here that metals are frozen in the ICM, and therefore
mixing with metal poor ICM is the only possible way of reduc-
ing the metal abundance.
In Fig. 5 we compare the mean metal abundance profile for clus-
ters with merger CC remnants with that of LEC clusters, as in
Fig. 4 for AGN CC remnants. In this case the mean profiles are
consistent but the scatter in clusters with CC remnants is larger.
Indeed, we did not expect the same results as in Fig. 4 (i. e. gas
with enhanced metalicity for its entropy) because, contrary to
AGN heating, merger heating does not affect only the central re-
gions of clusters and therefore the entropy ratios are modified in
a non-trivial way. Moreover, we cannot neglect the effect of gas
mixing, both on the entropy and on the metal abundance.

5.3. Non LEC clusters without metal abundance excess

Of the 21 objects of our sample which are classified as non LEC,
six feature regions with pseudo-entropy ratios smaller than 0.8,
but without a significant metal abundance excess (Z < 0.4Z⊙ at
more than 2σ confidence level). We will discuss in this section
some of the properties of these systems.
As shown in Table 2, we have strong indications of ongoing
mergers for five out of six objects, namely A2319, A399, A401,
A119 and A3266. The remaining cluster, A3158, shows some
indications of ongoing interactions based mainly on the galaxy
distribution (Johnston-Hollitt et al. 2008). These clusters do not
have a CC remnant, and this could mean that they have never
developed a cool core, as in thescenario proposed by McCarthy
et al. (2008). However, we should note that while in this “primor-
dial” scenario NCC may indifferently be relaxed or non-relaxed
objects, in most objects of this class (if not all) we have found
indications of on-going interactions.
The fact that most of these clusters show indications of on-going
interactions could suggest that they may have had a low-entropy
core that has been completely erased during the merger event.
As shown in many simulation works, the effects of a merger on
the structure of the ICM depends on many parameters, such as
the mass ratio, the impact parameter and the structure of thein-
teracting subclusters. Therefore it is not surprizing thatin some
cases the merger can efficiently destroy the low entropy core,
while in others it leaves a CC remnant.
We recall here than in three clusters (A399, A3266 and A2319)
the BCGs are located in the low-entropy region where we do not
find evidence of a metal excess (see Table 3). The interpretation
of this class of clusters is an interesting task: we speculate that
either the LEC state from which they evolved was characterized
by a metal abundance profile showing only a moderate excess
or, alternatively, that the mixing may have been more effective in
these clusters than in those where we observe CC remnants. We
recall that metalicity profiles of LEC clusters show a large scat-
ter: as can be seen also in Fig. 2, while the central metal abun-
dance of some clusters can reach almost solar values, in others it
reaches only 0.4Z⊙. Assuming a constant degree of mixing in all
clusters, it is clear that it would be easier to detect a metalexcess
in regions where gas withZ ∼ Z⊙ has mixed with the ambient
gas than in regions where mixing has occurred between ICM
with Z ≃ 0.4Z⊙ and ICM withZ ≃ 0.2Z⊙. Therefore systems
like A399, A3266 and A2319 could be remnants of “metal poor
CC”, where “poor” means that the metal abundance is lower
with respect to other CC objects. Alternatively, these could be
systems where metals have been mixed more efficiently than in
others where an abundance excess is detected.
It is interesting to note that the fraction of objects where the BCG
is not associated to the low-entropy regions is higher in clusters
showing noZ excess (3/6) than in merger CC remnants (2/8),
even if we should note that this difference is not statistically
significant. As shown in many simulations and in the case of
the “bullett cluster” (Clowe et al. 2006), in violent major merg-
ers the collisionless galaxy population may completely decouple
from the collisional ICM. It is natural to assume that these vio-
lent mergers are also more effective in mixing the gas and there-
fore in completely erasing metal abundance gradients. In this
scenario, the three clusters showing no metal abundance excess
and no BCG associated, namely A119, A3158 and A401, should
be those that have undergone the most destructive interactions.
However, this speculation needs further verification with alarger
sample of clusters.
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Figure 6: Metal abundance profiles of non-LEC clusters as a function
of the pseudo-entropy ratio in the regions of spectral extraction. The
symbols and colors are as in Table 1. The dashed horizontal line indi-
cates the mean value of outer regions of galaxy clustersZ = 0.23Z⊙,
(Leccardi & Molendi 2008a), while the vertical dashed line marks the
threshold pseudo- entropy ratio used to select regions for spectral anal-
ysis.

5.4. Metal abundance and entropy distribution

One may speculate whether our selection based on the pseudo-
entropy ratio< 0.8 is effective in identifying all the regions
with a large metalicity. Indeed, a possible counter-example to
our choice of using an entropy ratio threshold for the selection
of regions for spectral analysis would be the observation ofa
large metal abundance associated with high entropy gas, and
generally speaking the lack of anti-correlation between metal
abundance and pseudo-entropy ratio.
In Fig. 2 we have shown that the metal abundance excess in
LEC clusters is typically found in regions withs/sOUT < 0.8.
In a few cases, an excess is detected also in regions with
s/sOUT ∼ 1, but not at larger values. Moreover, the metal
abundance is always anti-correlated with the entropy.
We have performed the same test on the subsample of non-LEC
clusters, using the results of spectral analysis in radial annuli
centered on the surface brightness peak (Fig. 6). We do not
include in this figure the four highly disturbed clusters forwhich
we have not performed spectral analysis in radial annuli. Itis
interesting to note that we do not find a single region where a
significant metal excess is associated to a pseudo entropy ratio
larger than 1. If a metal abundance excess is observed, it is
invariably associated with ICM with a low pseudo-entropy ratio.

5.5. Cooling times

The results presented in this paper support the “evolutionary”
scenario of the CC-NCC dichotomy: most non-LEC clusters
have likely “evolved” from a LEC state. It is therefore natural to
ask ourselves if this is a “one way trip”, i. e. whether once a clus-
ter has undergone a merger it remains a non-LEC cluster for the
rest of its life or it has the possibility of reforming a low-entropy
core, as in the old cyclic vision of cooling flows-mergers.
In Fig. 7 we plot the cooling time in a central bin of a ra-

dius 0.05R180 for the clusters of the initial sample for which we
have performed radial analysis and de-projection (i. e. excluding

Figure 7: Cooling time in the inner 0.05R180 for the clusters of the
sample for which we have performed radial analysis and de-projection.
Horizontal dashed line is the Hubble time.

A3266, A2256, A3667 and A754). The cooling time is gener-
ally larger than the Hubble time for non-LEC clusters, including
those of most clusters with a CC-remnant (A576, A3571, A3562,
A3558, we do not have this 3-D information for A3667, A754
and A2256). Therefore these clusters would appear to be unable
to develop a new low-entropy core.
The cooling time shown in Fig. 7 is a mean value calculated in
a large region. If the mixing of the ICM is not completely effec-
tive, clumps of cool gas may reside in these regions, and in these
clumps the cooling will be much more effective. In this case,
we should consider the measured cooling time only as an upper
limit, and it is possible that the cooler gas could contribute to the
formation of a low entropy core on time scales shorter than the
Hubble time. Any future observation of these clumps of cool gas
will be useful to test the possibility of a “return journey” to the
LEC state.

6. Summary and Conclusions

We have presented a systematic two-dimensional analysis ofthe
entropy and metal abundance of a sample of nearby clusters ob-
served withXMM-Newton .

– We have analyzed the observations of a sample of 35 clus-
ters. Following the prescription in Paper I, we have classified
14 of them as low-entropy cores. In the remaining 21 non-
LEC objects we have performed a systematical analysis of
the entropy maps and selected regions with a pseudo-entropy
ratio lower than 0.8 for a proper spectral analysis. All the
clusters in our subsample host regions with these character-
istics.

– In most non-LEC objects (12/21) the low entropy regions
are characterized by a significant metal abundance excess
with respect to outer regions of galaxy clusters. For six of the
remaining clusters we can exclude with high confidence an
abundance larger than 0.4Z⊙, while for three objects the er-
ror bars are too large to discriminate between the two classes.
We have interpreted the low-entropy high metal abundance
regions that we found in 12 clusters as the remains of a cool
core after a heating event, and we have dubbed them “CC
remnants”.
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– For two clusters, A1650 and MKW3s, the most likely
heating mechanism is AGN feedback. As shown by Voit
& Donahue (2005), clusters with a core entropy of.
50 keV cm2 are within the reach of powerful AGN outbursts.

– In 8/12 clusters with a CC remnant, the core entropy is too
large to be produced by giant AGN outbursts. In all these
clusters we have found indications of on-going interactions,
and five of them are probably undergoing a major merger.
Therefore the most likely heating mechanism for this class
of objects is merging, which can shock-heat and mix the
ICM. In most of these clusters, the CC remnant is associated
with the BCG or with a giant elliptical galaxy, which could
be responsible for the production of the metal excess dur-
ing the LEC phase. In A3667 and A2256 the merging may
have completely decoupled the low-entropy metal-rich gas
from its associated galaxy concentration. In A754, A2256
and A3667 the position of the CC remnant does not coincide
with the centroid of the X-ray emission, indicating that the
low-entropy metal-rich ICM is not in equilibrium within the
potential well of the host clusters.

– In six objects out of 21 we have not found a significant metal
excess in the low entropy regions. Since most of these clus-
ters show indications of major mergers, we have interpreted
them as clusters where the metal abundance gradient has
been erased by the mixing following mergers.

The results presented in this paper strengthen those shown in
Paper I. Indeed, in Paper I we found a metal abundance ex-
cess in a small fraction of non-LEC clusters. Thanks to the two-
dimensional analysis presented in this paper, we have founda
metal abundance excess in most objects. We conclude that most
non-LEC objects have spent part of their life as low-entropy
cores. After a heating event the LEC signature disappears, but
the “CC-like” ICM (i. e. characterized by large metal abundance
and low entropy, albeit not as low as in LEC) remains in the sys-
tems and can be identified in two-dimensional entropy maps.
In the framework of the alternative “primordial” scenario the
low entropy metal rich regions could be interpreted as “progen-
itors” of cool cores that are now evolving (slowly cooling and
increasing their metalicity) to become LEC. However, this sce-
nario does not explain why most of these regions lie in dynam-
ically active objects and why at least three of them are foundin
a configuration of non-equilibrium, offset from the center of the
clusters. Conversely, this issue is naturally addressed ifthey are
the results of a merger event in the evolutionary scenario.
The results summarized above strongly support scenarios where
cluster core properties are not fixed “ab initio”, but evolveacross
cosmic time.
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Figure A.1: Entropy ratio versus pseudo-entropy ratio
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Appendix A: Relation between Pseudo-Entropy and
Entropy ratios

We have used the entropy profiles for the 31 clusters in our
sample for which we have performed radial analysis to test if
the pseudo-entropy ratios (defined in Paper I) are good indi-
cators of the behavior of the true three dimensional entropy
(S ≡ TX/n

2/3
e ). We have therefore calculated the entropy ratio

S IN/S OUT , starting from the three-dimensional entropy profiles
obtained with the de-projected temperature and density profiles.
We show in Fig. A.1 that there is a strong correlation between
the “true” entropy ratio and the “pseudo” entropy ratios. Wefit-
ted the points in Fig. A.1 with a linear model taking into account
the errors on both coordinates (with the IDL Astrolib procedure
FITEXY.PRO5), and we found

S IN

S OUT
= −0.051± 0.004+ (0.792± 0.011)∗

sIN

sOUT
. (A.1)

As expected, the entropy ratios are smaller than pseudo-entropy
ratios, since projection effects smooth out the gradients.
In order to quantify the scatter around the best fit relation,we
have applied to the residuals a maximum likelihood algorithm
that postulates a parent distribution described by a mean and an
intrinsic dispersion (Maccacaro et al. 1988). To do this we have
calculated an “effective error” on the y coordinate, which takes
into account the errors on both coordinates, defined as:σ2

e f f =

5 http://idlastro.gsfc.nasa.gov/ftp/pro/math/fitexy.pro

σ2
y +b2σ2

x, whereb is the best-fit value for the slope of the linear
relation between the two data sets (in this caseb = 0.792, Eq.
A.1). The mean value of the residual distribution is consistent
with zero (0.021), with an intrinsic dispersionσ = 0.043.

Appendix B: Figures of individual clusters

In this Appendix, we provide details for the low-entropy metal
rich regions in the clusters with CC remnants. For each cluster,
we show the EPIC X-ray flux image in the 0.4− 2 keV energy
range (see Rossetti et al. 2007 for details), the pseudo-entropy
ratio image and the optical image taken from the DSS.
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Figure B.1: Abell 1650.Upper left panel: X-ray flux image.Upper right panel: Pseudo-entropy ratio map (zoom), with X-ray contours overlaid.
Lower left panel: optical image (zoom), with X-ray contours overlaid. The redbox in the first panel marks the region zoomed in in the other two
panels. The red polygon in the other two panels is the contourof the “CC-remnant”, i. e. it marks the bins where the pseudo-entropy ratio is< 0.8.
The green circle (lower left) and “X” mark the position of theBCG. The scale refers to the pseudo-entropy ratio map.
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Figure B.2: MKW3s.Upper left panel: X-ray flux image.Upper right panel: Pseudo-entropy ratio map (zoom), with X-ray contours overlaid.
Lower left panel: optical image (zoom), with X-ray contours overlaid. The redbox in the first panel marks the region zoomed in in the other two
panels. The red polygon in the other two panels is the contourof the “CC-remnant”, i. e. it marks the bins where the pseudo-entropy ratio is< 0.8.
The green circle (lower left) and “X” mark the position of theBCG. The scale refers to the pseudo-entropy ratio map.
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Figure B.3: A4038.Upper left panel: X-ray flux image.Upper right panel: Pseudo-entropy ratio map (zoom), with X-ray contours overlaid.Lower
left panel: optical image (zoom), with X-ray contours overlaid. The redbox in the first panel marks the region zoomed in in the other two panels.
The red polygon in the other two panels is the contour of the “CC-remnant”, i. e. it marks the bins where the pseudo-entropyratio is< 0.8. The
green circle (lower left) and “X” mark the position of the BCG. The scale refers to the pseudo-entropy ratio map.
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Figure B.4: A1644.Upper left panel: X-ray flux image.Upper right panel: Pseudo-entropy ratio map (zoom), with X-ray contours overlaid.Lower
left panel: optical image (zoom), with X-ray contours overlaid. The redbox in the first panel marks the region zoomed in in the other two panels.
The red polygon in the other two panels is the contour of the “CC-remnant”, i. e. it marks the bins where the pseudo-entropyratio is< 0.8. The
green circle (lower left) and “X” mark the position of the BCG. The scale refers to the pseudo-entropy ratio map.
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Figure B.5: Abell 1689.Upper left panel: X-ray flux image.Upper right panel: Pseudo-entropy ratio map (zoom), with X-ray contours overlaid.
Lower left panel: optical image (zoom), with X-ray contours overlaid. The redbox in the first panel marks the region zoomed in in the other two
panels. The red polygon in the other two panels is the contourof the “CC-remnant”, i. e. it marks the bins where the pseudo-entropy ratio is< 0.8.
The green circle (lower left) and “X” mark the position of theBCG. The scale refers to the pseudo-entropy ratio map.
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Figure B.6: Abell 3558.Upper left panel: X-ray flux image.Upper right panel: Pseudo-entropy ratio map (zoom), with X-ray contours overlaid.
White regions have no data because of point sources subtraction (Rossetti et al. 2007).Lower left panel: optical image (zoom), with X-ray contours
overlaid. The red box in the first panel marks the region zoomed in in the other two panels. The red polygon in the other two panels is the contour
of the “CC-remnant”, i. e. it marks the bins where the pseudo-entropy ratio is< 0.8. The green circle (lower left) and “X” mark the position of
the BCG. The scale refers to the pseudo-entropy ratio map.
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Figure B.7: Abell 576.Upper left panel: X-ray flux image.Upper right panel: Pseudo-entropy ratio map (zoom), with X-ray contours overlaid.
Lower left panel: optical image (zoom), with X-ray contours overlaid. The redbox in the first panel marks the region zoomed in in the other two
panels. The red polygon in the other two panels is the contourof the “CC-remnant”, i. e. it marks the bins where the pseudo-entropy ratio is< 0.8.
The green circle (lower left) and “X” mark the position of theBCG. The scale refers to the pseudo-entropy ratio map.
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Figure B.8: Abell 754.Upper left panel: X-ray flux image.Upper right panel: Pseudo-entropy ratio map (zoom), with X-ray contours overlaid.
Lower left panel: optical image (zoom), with X-ray contours overlaid. The redbox in the first panel marks the region zoomed in in the other two
panels. The red polygon in the upper right panel is the contour of the “CC-remnant”, i. e. it marks the bins where the pseudo-entropy ratio is
< 0.8. The blue circle and X show the position of the BCG, while thegreen circle and X show the elliptical galaxy 2MASSX J09091923-0941591.
The scale refers to the pseudo-entropy ratio map.
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Figure B.9: Abell 3562.Upper left panel: X-ray flux image.Upper right panel: Pseudo-entropy ratio map (zoom), with X-ray contours overlaid.
Lower left panel: optical image (zoom), with X-ray contours overlaid. The redbox in the first panel marks the region zoomed in in the other two
panels. The red polygon in the other two panels is the contourof the “CC-remnant”, i. e. it marks the bins where the pseudo-entropy ratio is< 0.8.
The green circle (lower left) and “X” mark the position of theBCG. The scale refers to the pseudo-entropy ratio map.
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Figure B.10: Abell 3571.Upper left panel: X-ray flux image.Upper right panel: Pseudo-entropy ratio map (zoom), with X-ray contours overlaid.
Lower left panel: optical image (zoom), with X-ray contours overlaid. The redbox in the first panel marks the region zoomed in in the other two
panels. The red polygon in the other two panels is the contourof the “CC-remnant”, i. e. it marks the bins where the pseudo-entropy ratio is< 0.8.
The green circle (lower left) and “X” mark the position of theBCG. The scale refers to the pseudo-entropy ratio map.
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Figure B.11: Abell 3667.Upper left panel: X-ray flux image,.Upper right panel: Pseudo entropy ratio map (zoom), with X-ray contours overlaid.
Lower left panel: optical image (zoom), with X-ray contours overlaid. The redbox in the first panel marks the region zoomed in in the other two
panels. The red polygon in the other two panels is the contourof the “CC-remnant”, i. e. it marks the bins where the pseudo entropy ratio is< 0.8.
The yellow circle (lower left) and “X” mark the position of the BCG. The scale refers to the pseudo entropy ratio map.
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Figure B.12: Abell 2256.Upper left panel: X-ray flux image.Upper right panel: Pseudo-entropy ratio map (zoom), with X-ray contours overlaid.
Lower left panel: optical image (zoom), with X-ray contours overlaid. The redbox in the first panel marks the region zoomed in in the other two
panels. The red polygon in the other two panels is the contourof the “CC-remnant”, i. e. it marks the bins where the pseudo-entropy ratio is< 0.8.
The green circle (lower left) and “X” mark the position of theBCG. The scale refers to the pseudo-entropy ratio map.
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Table 1: Observations analyzed for the clusters in the sample. In the case of multiple observations, the one indicated with ∗ (usually
the longest) is the one used for spectral analysis. The exposure time in the third column is the sum of the exposure times ofthe three
instruments after SP cleaning. In Col. 4 we list the symbols and colors used to mark each cluster in the figures of the present paper.

Cluster Observation ID Exposure time (ks) Symbol
A4038 0204460101 78.1 Black open triangle
A2199 0008030201∗ 42.8 Black open square

0008030301 11.2
0008030601 11.3

A496 0135120201 47.2 Black open circle
2A0335+096 0147800201 230.8 Black filled triangle

A2052 0109920101 85.1 Black filled square
A576 0205070401∗ 42.7 Black filled circle

0205070301 28.1
A3571 0086950201 43.5 Blue open triangle
A119 0012440101 54.1 Blue open square

MKW3s 0109930101 99.2 Blue open circle
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Table 1: continued.

Cluster Observation ID Exposure time (ks) Symbol
A1644 0010420201 42.0 Blue filled triangle
A4059 0109950101∗ 32.4 Blue filled square

0109950201 64.9
A3558 0107260101 126.4 Blue filled circle
A3562 0105261301∗ 116.6 Red open triangle

0105261501 45.0
0105261601 52.5
0105261701 57.7
0105261801 23.6

Triangulum Australis 0093620101∗ 27.3 Red open square
0093620201 8.3
0093620301 31.8

Hydra A 0109980301 52.2 Red open circle
A754 0136740101∗ 40.6 Light blue open square

0136740201 14.8
0112950401 31.8
0112950301 34.8

A3266 0105260901∗ 66.5 Light blue open circle
0105262001 13.7
0105262101 16.2
0105261101 33.1
0105262201 9.1
0105261001 5.8
0105260701 56.4
0105260801 56.7
0105262501 17.3

A85 0065140101 34.6 Red filled triangle
A3532 0030140301 27.7 Green filled star
A3667 0206850101∗ 162.9 Light blue open triangle

0105260101 15.4
0105260601 62.5
0105260401 45.6
0105260301 47.2
0105260501 38.6
0105260201 31.8

A2319 0302150101a 27.6b Red filled square
0302150201a 28.2b

A2256 0141380201∗ 33.1 Light blue filled circle
0112950601 25.3
0112951501 28.1
0112951601 30.9
0141380101 24.4

A3158 0300210201∗ 33.2b Red filled circle
0300211301 14.0b

A1795 0097820101 97.3 Green open triangle
A399 0112260101 27.9 Green open square
A401 0112260301 34.7 Green filled triangle
A3112 0105660101 64.6 Green filled square
A2029 0111270201 30.8 Green filled circle
A2255 0112260801 25.1 Pink open triangle
A1650 0093200101 75.0 Pink open square
A2597 0147330101 144.3 Pink open circle
A478 0109880101 136.7 Pink filled triangle

PKS0745-191 0105870101 34.3 Pink filled square
A2204 0112230301∗ 51.2 Pink filled circle

0306490101 17.6b

0306490201 30.9b

0306490301 22.7b

0306490401 29.7b

A1689 0093030101 106.7 Pink filled star
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Notes: a We used both observations of A2319 to increase the statistics. b Since these observations have been performed after the
degradation of CCD 6 in MOS1 in 2005, we did not consider the MOS1 detector and the exposure time given in the table is just
MOS2+ pn.


