Summary of the lesson

Cosmic Rays

CRs in Galaxies The MilkyWay in & Rays Diffuse emission Molecular Clouds

x Rays from other galaxies

Supernova Remnants

Evolution MC associations Gamma-ray from SNR

Others possible CRs sources

the Milky Way

CR Propagation

Cosmic Ray power in the Galaxy

$$w_{CR} \sim 1 \text{ eV/cm}^3 \longrightarrow \mathcal{E}_{CR} = w_{CR} V_{disk}$$

Cosmic Ray power in the Galaxy

$$w_{CR} \sim 1 \text{ eV/cm}^3 \longrightarrow \mathcal{E}_{CR} = w_{CR} V_{disk}$$

$$P_{CR} = \frac{\mathcal{E}_{CR}}{t_{disk}} = \frac{w_{CR}V_{disk}}{t_{disk}} = 3 \times 10^{40} \text{ erg/s}$$

The Supernovae power in the Galaxy

A supernova releases $\sim 10^{51}$ ergs in form of kinetic energy. In the Galaxy the observed supernova rate is of the order of 1/30 - 1/100 yr⁻¹.

$$P_{SN} = 3 \times 10^{41} \text{ erg/s}$$

The Supernovae power in the Galaxy

A supernova releases $\sim 10^{51}$ ergs in form of kinetic energy. In the Galaxy the observed supernova rate is of the order of 1/30 - 1/100 yr⁻¹.

$$P_{SN} = 3 \times 10^{41} \text{ erg/s}$$

$$P_{CR} = 3 \times 10^{40} \text{ erg/s}$$

SuperNovae alone could maintain the CR population provided that about 10% of their kinetic energy is somehow converted into CRs Ginzburg e Syrovatskii (1964)

M101 Spiral galaxies: Host all types of SNe Stellar population: a mix of old and young

M49 Elliptical galaxies: Only Type Ia Stellar population: old

The Galaxy: +/- 2 supernovae per century

Red giant

Planetairy Nebulae White dwarf

Type Ia: - The whole star is disrupted by the explosion -The source of energy is nuclear fusion, predominantly the burning of C/O into 56Ni -Most of the energy is in the form of heat (10^{51} erg) Type II/Ibc: -The core of the star collapses into a neutron star -The source of energy is therefore gravity $(\sim GM^2/R_{NS} \sim 10^{53} \text{ erg})$ -Most of the energy released as neutrinos! -Only 1% converted to heat/kinetic energy!

-Nuclear fusion: by-product/not source of the explosion

Size: 30' The size of the full Moon

Historical brightness -6 mag, perhaps -9 mag

Chandra

Shell Types: Shell of shock heated gas

O VIII

Si XIII

Continuum

Type Ia supernova Shell Type SNR Core-collapse supernova (Type Ib) Shell Type SNR

Cas A

3 phases in SNR's life

1) Free expansion (less than 200-300 years)

2) Adiabatic or "Taylor-Sedov" phase (about 20 000 - 40 000 years)

3) Radiative phase (up to 500 000 years)

4) ... and then, merge with the ISM

Shocks

 Conservation laws: mass, momentum and energy conservation: Use system in which shock is at rest

> $\rho_1 v_1 = \rho_2 v_2$ $(\rho_1 v_1) v_1 + p = (\rho_2 v_2) v_2 + p$ $(1/2\rho_1 v_1^2 + u) v_1 = (1/2\rho_2 v_2^2 + u) v_2$ internal energy u=p/(γ-1), γ=5/3 for monatomic gas

•Simplification: heat sinks (cosmic ray acceleration!), magnetic fields, and radiation losses not taken into account.

•For strong shocks (M $\rightarrow \infty$) one finds: $\rho_2/\rho_1 = (\gamma+1)/(\gamma-1) = 4$, implying $v_2 = 1/4v_s$ $kT_2 = 2(\gamma-1)(\gamma+1)^{-2} m v_s^{-2} = 3/16m v_s^{-2}$, with m particle mass

Meccanismo di accelerazione del primo ordine di Fermi

The Fermi acceleration

toy model

. . . .

V Urto n. 0 1 2 3	Velocità nel lab. 0 +2V -6v +14v	

The resulting energy spectrum of many particles undergoing this process (assuming that they do not influence the structure of the shock) turns out to be a power law:

$$\frac{dN(\epsilon)}{d\epsilon} \propto \epsilon^{-p} \qquad \qquad {\rm p>=2}$$

where the spectral index depends, for nonrelativistic shocks, only on the compression ratio of the shock

SNR Cas A (2nd brigthest radio source!) Age ~300 yr

SNR Cas A (2nd brigthest radio source!) Age ~300 yr

SNR Cas A (2nd brigthest radio source!) Age ~300 yr

Featurless pl spectrum --> Non-thermal emission -->Sync. emission from ultrarel. electrons

F ~ E^{-p} p = 1-5 - 2.5 Emax ~ 1 -10 TeV

SNRs in gamma-rays

What about protons ?

protons + ISM nuclei $\rightarrow \pi^0 \rightarrow \gamma$ rays

Emission in the hard gamma ray band

 $F_{gamma} \sim f_p * n$ (density of ISM nuclei)

Zhang et al 2007

New generation of Cherenkov telescopes (HESS, MAGIC, VERITAS)

Energy Range : 100 GeV – 10 TeV

RX J1713.7-3946

Distance : 1.2 kpc Age : 2 kyrs Size : 65'

Good X-ray-TeV correlation

Non-thermal spectrum well fitted by both leptonic and hadronic models

AGILE (2007 -) (50) 100 MeV - 10 GeV

> Fermi (2008 -) 200 MeV - 30 GeV

n new	Age	dist	GeV	TeV (C.u	.) 1 GHz (Jy)
CasA	330	3.4	2.5	0.033	2720
Tycho	400	3.5	1.4	0.009	56
VelaJr 📕	500	0.2		1.0	50
RXJ1713	1000	1.2	10	0.66	
RCW86	2000	2.5		0.2	49
W49B	2000	8.0	1.0	0.005	38
CTB37A	2000	10.3	14	0.03	72
CTB37B	5000	10.2		0.018	26
G318.2+0.1	8000	3.5			
G106.3+2.7	10000	0.8		0.05	6
gammacygni	15000	0.8	40.0	0.05	6
cygnusloop	17000	0.5	10.0	-0.005	210
W51C	20000	6.0	66	0.003	160
W44	20000	3.0	115	-0.005	230
G353.6-0.7	27000	3.2			2.5
IC443	30000	1.5	50	0.03	160
W28	40000	2.0	40	0.38	310

Cas A

W51C

W44

IC 443

1) the young SNRs (10² - 10³ yrs) are shell-like object, expanding in a relatively low density medium, with gamma emission morphology typically very nicely correlated with the radio (and often X) shell

Hinton JA, Hofmann W. 2009. R Annu. Rev. Astron. Astrophys. 47:523–65

1) the young SNRs (10² - 10³ yrs) are shell-like object, expanding in a relatively low density medium, with gamma emission morphology typically very nicely correlated with the radio (and often X) shell

2) the middle-aged SNRs (10³ - 10⁴ yrs) are mixed-morphology objects, interacting with giant molecular clouds and with a gamma morphology that correlates with M.C. better than with the radio shell.

Different spectrum

Different Ages

Different frequency

Class 1: Very common (All the historical SNRs emit gamma-rays!)

Class 2 : Quite rare (~ 1 %, only those SNRs close to a GMC)

Diffusion of CR in the ISM

$$\frac{dn(E,r)}{dt} = D(E)\nabla^2 n(E,r) - \frac{\partial}{\partial E}n(E,r)b(E) + Q(E,r)$$

$$\downarrow$$
Diff. in physical space

Diff. in physical space

Energy losses

Source

Diffusion of CR in the ISM

$$\frac{dn(E,r)}{dt} = D(E)\nabla^2 n(E,r) - \frac{\partial}{\partial E}n(E,r)b(E) + Q(E,r)$$

see Aharonian & Atoyan, A&A, 309, 1996

Diffusion of CR in the ISM

$$R_{diff}(E,t) = 2\sqrt{D(E)t}$$

$$D(E) = D_0 E^{\delta} \simeq 10^{26} \left(\frac{E}{10 \ GeV}\right)^{0.5} \ cm^2 \ s$$

--> Slow !

--> Faster diffusion for high energy CR

see Aharonian & Atoyan, A&A, 309, 1996

: protons + ISM nuclei $\rightarrow \pi^0 \rightarrow \gamma$ rays

 $F(E) = K E^{-p}$ [particles / cm² s sr GeV]

: protons + ISM nuclei $\rightarrow \pi^0 \rightarrow \gamma$ rays

For a given R and D :
$$E_{cut} = \left(\frac{R^2}{4tD_0}\right)^{\frac{1}{\delta}}$$

