Accretion

Gravitational Energy

surface gravity:	$g = \frac{GM}{r^2}$
grav. force:	F=mg
work:	dE=Fdr

$$E = m \int_{R}^{\infty} g dr = m \int_{R}^{\infty} \frac{GM}{r^{2}} dr$$
$$E = m \left[\frac{GM}{r}\right]_{R}^{\infty}$$

Examples: White dwarf

 $M = 0.6 M_{\odot}$

 $R = 10 \ 000 \ km$

E=GMm/R

 $m = 1 g \Rightarrow$

 $E \approx 8 \times 10^{16 \text{ erg}}$

Example: Neutron star

CENTAURUS X-3: A HIGH MASS X-RAY BINARY

$$M = 1.4 M_{\odot}$$

R= 10 km

E=GMm/R

 $m = 1 g \Rightarrow$

 $E \approx 2 \times 10^{20} \text{ erg}$

Example: Stellar black hole

 $M = 6 M_{\Box}$ $R \approx 2GM/c^2 \approx 18 \text{ km}$

 $E=GMm/R \approx 0.5 \text{ mc}^2$ $m = 1 \text{ g} \Rightarrow$ $E \approx 4 \times 10^{20 \text{ erg}}$ $m = 1 \text{ M}_{\square \Rightarrow}$ $E \approx 8 \times 10^{53 \text{ erg}}$

⇒ If energy released in seconds/minutes: GRB luminosity (collapsar model)

Example: Active galactic nucleus (AGN)

$$M = 10^{8} M$$

 $E=GMm/R \approx 0.5 \text{ mc}^2$ $m = 1 \text{ g} \Rightarrow$ $E \approx 4 \times 10^{20 \text{ erg}}$

⇒ Are stellar BH as bright as AGN?!

Accretion in binary systems Compact star M , normal star M with $M_2 < M_1$

Normal star expanded or binary separation decreased => normal star feeds compact star

Roche Lobes

Roche lobes and Lagrangian points

Test particle in binary system: equipotential surface

5 equilibrium points: Lagrangian points If a star fills its Roche lobe \Rightarrow mass transfer \Rightarrow accretion

Formation of an accretion disk

Accretion disk formation

Matter circulates around the compact object:

Cyg X-1

Bright X-ray sources when in accreting binary systems

Cyg X-1: X-ray variability on <1 s timescale; M ~ 15 M_☉

Accretion disk

- Material transferred has high angular momentum so must lose it before accreting => disk forms
- Gas loses angular momentum through collisions, shocks, viscosity and magnetic fields: kinetic energy converted into heat and radiated.
- Matter sinks deeper into gravity of compact object

Accretion: gravitational power plant

potential energy:

kinetic energy:
$$\frac{1}{2}mv^2$$

thermal energy:
$$\frac{3}{2}kT$$

radiation: hv

Accretion Disk Luminosity

For most accretion disks, total mass of gas in the disk is << *M* so we may **neglect self-gravity**

Hence the disk material is in circular Keplerian orbits with angular velocity

$$\Omega = (GM/R^3)/2 = v/R$$

Energy of **particle** with mass *m* in the Kepler orbit of radius *R* just grazing the compact object is

$$\frac{1}{2}mv^{2} = \frac{1}{2}m\frac{GM}{R} = \frac{1}{2}E_{acc}$$

Gas particles start at large distances with negligible energy, thus

$$L_{disk} = \frac{GMM}{2R} = \frac{1}{2}L_{acc}$$

Disk structure

The other half of the accretion luminosity is released very close to the star.

BH's accretion disks

Gravitational energy at ISCO ($R_{ISCO} = 3R_S \sim 100 \text{ km for a } 10 M_{\odot} BH$): $E_G \sim GmM/3R_s = GmMc^2/6GM = mc^2/6$ Efficiency: $E_G/mc^2 \sim 1/6 \sim 20\% \approx 0.7\%$ (nuclear fusion)

Spinning vs non-spinning BHs

The Eddington luminosity

Accretion rate: \dot{M} (measured in [g/s] or [M_{Π}/yr])

Accretion luminosity: $L_{acc} = \frac{GM\dot{M}}{R}$ [erg/s] Maximum accretion rate onto a **neutron star**: $L_{E,NS} \approx 1.8 \times 10^{38}$ erg/s $\Rightarrow \dot{M}_{E,NS} = \frac{L_{E,NS}R}{GM} \approx 1.5 \times 10^{-8}$ M₀/yr Maximum accretion onto a **supermassive** (10⁸) black hole:

$$L_{E,AGN} \approx 10^{46} \text{ erg/s} \Rightarrow \dot{M}_{E,AGN} \approx 0.5 \text{ M}_{o}/\text{yr}$$

Characteristic temperatures

Define temperature T_{rad} such that hv ~ kT
 Define 'effective' BB temp T_b

$$T_b = \left(L_{acc} / 4 \pi R^2 \sigma \right)^{1/4}$$

Thermal temperature, T_{th} such that:

$$G\frac{M(m_p + m_e)}{R} = 2 \times \frac{3}{2}kT_{th} \implies T_{th} = \frac{GMm_p}{3kR}$$

Accretion temperatures

Optically-thick flow:

 $T_{rad} \sim T_b$

Optically-thin flow:

$$T_{rad} \sim T_{th}$$

Computing accretion temperatures

In general,

$$T_b \leq T_{rad} \leq T_{th}$$

For a neutron star:

$$T_{th} = \frac{GMm_p}{3kR} \approx 7.5 \times 10^{11} K$$
$$T_b = \left(L_{acc} / 4 \pi R^2 \sigma \right)^{1/4} \approx 2 \times 10^7 K$$

assuming:

$$L_{acc} \approx L_{Edd} = 1.3 \times 10^{38} \left(\frac{M}{M_{Sun}} \right) \text{erg/s}$$

Accreting NS and WD spectrum

Thus expect photon energies in range:

$$1 \text{ keV} \le h\nu \le 100 \text{ MeV}$$

Similarly for a stellar mass black hole

For white dwarf, L ~ 10 erg/s, M ~
$$M_{\Box, R = 5 \times 10}$$
 cm,
 $1 \epsilon \varsigma \le h \nu \le 100 \text{ keV}$

=> optical, UV, X-ray sources

Accreting White Dwarfs in binary systems are called Cataclismic Variables (CVs)