Pulsar and Pulsar Wind Nebulae

Discovery of 1st Pulsar

In 1967, graduate student Jocelyn Bell and her advisor Anthony Hewish accidentally discovered a radio source in *Vulpecula* (*LGM1*).

Discovery of 1st Pulsar

- Sharp pulse recurred every 1.3 sec.
- Determined it was 300 pc away.
- They called it a "pulsar", but what was it?

Break-up limit for WDs and NSs

Centrifugal acceleration at equator < gravitational acceleration

$$\Omega^2 R < \frac{GM}{R^2} \Rightarrow \frac{4\pi^2}{P^2} < \frac{GM}{R^3} \Rightarrow P > 2\pi \sqrt{\frac{R^3}{GM}}$$

Minimum spin period for:

- Typical WD (R=10000 km, M=0.5 M_{Π}) P>24 s
- The fastest WD (R=3000 km, M=1.3 M_{Π})

M1 – Crab Nebula

M1 – Crab Nebula

SN 1054

MW Crab Nebula

The Crab Pulsar

The mystery was solved when a pulsar was discovered in the heart of the Crab Nebula.

The Crab pulsar also pulses in visual light

Break-up limit for WDs and NSs

Centrifugal acceleration at equator < gravitational acceleration

$$\Omega^2 R < \frac{GM}{R^2} \Rightarrow \frac{4\pi^2}{P^2} < \frac{GM}{R^3} \Rightarrow P > 2\pi \sqrt{\frac{R^3}{GM}}$$

Minimum spin period for:

- Typical WD (R=10000 km, M=0.5 M_{Π}) P>24 s
- The fastest WD (R=3000 km, M=1.3 M_{Π}) P>2.5 s

• Typical NS (R=10 km, M=1.4 M_{Π})

P>0.5 ms

Pulsar: cosmic lighthouse

- PSR 0329+54 (714 ms)
- Vela Pulsar (89 ms)
- PSR 1937-21 (1.5 ms)

Neutron Star = Pulsar

Theory

Tiny Mass ~ 1.5 M_e

Supernova Corpse

Rotating Fast

High magnetic field and spin-down rate

Observations

Small Pulse Width

Confirmed in binaries

Seen in SN Remnants

Short Pulse Period

Synchrotron nebula

The Crab paradigm

From **young, fast and energetic** to **old, slow and faint** pulsars

Isolated NSs are born as fast-spinning radio pulsars
Pulsars spin down because of dipole radiation

Crab Pulsar

Crab: P=33 ms,
$$\dot{P}$$
=4.3 × 10⁻¹³ s s⁻¹
Rotational energy loss: $\dot{E}_{rot} = \frac{d}{dt} \left(\frac{1}{2} I \omega^2 \right) = I \omega \dot{\omega} = I \frac{4\pi^2}{P} \frac{d}{dt} \left(\frac{1}{P} \right) = -4\pi^2 I \dot{P} P^{-3}$
 $\Rightarrow \dot{E}_{rot,Crab} \approx 5 \times 10^{38} \text{ erg s}^{-1}$

Rotating magnetic dipole in vacuum: $\dot{E} = -(32\pi^4/3c^3)B_{\perp}^2R^6P^{-4}$ $\Rightarrow B_{\perp} = \sqrt{\frac{3c^3IP\dot{P}}{8\pi^2R^6}} \approx 3.2 \times 10^{19} (P\dot{P})^{1/2} \text{ G}$ $\Rightarrow B_{Crab} \approx 4 \times 10^{12} \text{ G}$

Characteristic age: $au = P/2\dot{P}$

Assuming B = const: $P\dot{P} = const$ $P\dot{P} = P\frac{dP}{dt} \Rightarrow \int_{0}^{\tau} PdP = \int_{0}^{\tau} P\dot{P}dt \Rightarrow \frac{1}{2}(P^{2}-P_{0}^{2}) = P\dot{P}\tau \Rightarrow \tau \approx \frac{P}{2\dot{P}}$ if $P_{0} << P$ $\Rightarrow \tau_{crab} \approx 1218$ yrs $\approx 2014 - 1054 = 960$ yrs

What is the energy source?

Rotation

Radio pulsars are rotation-powered neutron stars

Neutron Stars cooling

Originating from supernova explosions, NSs are very hot at birth: $T\!\sim\!10^{11}$ K

Very **fast initial cooling**, due to neutrino emission: $T\sim 10^9$ - 10^{10} K after ~ 1 day

- After ~100 years, NS interior is **~isothermal**.
- Cooling: $dU/dt = -L_v(T_i) L_y(T_s) + \Sigma_k H_k$
 - $L_v = \int Q_v dV$
 - $L_{y} = 4\pi R^{2} \sigma T_{s}^{4}$
 - $H_k = heating \ processes$ (esothermal reactions, viscosity, beta decay, accretion ...)

Cooling is driven by **neutrinos** for $\sim 10^5$ years, then by photons

Egret Pulsars

Pulsar	Period (ms) P	Age (kyr) P/2P	EGRET F_{-8}	Pulsar catalog F_{-8}	2FGL F(1-100 GeV) ^a
0833-45, Vela	89.3	11.3	834.3 ± 11.2	1061 ± 7.0	135.8 ± 0.4
J0633+1746, Geminga	237	340	352.9 ± 5.7	305.3 ± 3.5	72.9 ± 0.3
0531+21, ^b Crab	33	1.25	226.2 ± 11.2	209 ± 4	18.3 ± 0.15
1706-44	102	17.6	111.2 ± 6.2	149.8 ± 4.1	19.1 ± 1.7
1055-52	197	540	33.3 ± 3.82	30.45 ± 1.7	5.0 ± 0.09
1951+32°	39.5	110	16 ± 2	17.6 ± 1.9	2.1 ± 0.07
1509-58,° Circinus	88.9	150	_	8.7 ± 1.4	1.45 ± 0.08

Table 3 γ-ray fluxes of EGRET pulsars [17, 44, 70]

^aAlso in units of 10⁻⁸ ph cm⁻² s⁻¹

^bAssociated with SN 1054

^cPulsars not reported in the 3EG [71]

Emission in pulsars

Crab-like: $\tau < 10^4$ years. In SNR and thermal emission well below non-termal PL emission (only upper limits on T)

Vela-like: $\tau \sim 10^4$ -10⁵ years. Thermal emission emerging from non-thermal emission (T_{∞} ~ 1 MK)

Geminga-like: $\tau \sim 10^{5}$ -10⁶ years. At X-rays, thermal emission and non-thermal tail

Vela pulsar light curve

Gamma-ray spectrum

 $N(E) \propto E^{-\Gamma_{\gamma}} \exp[-(E/E_c)^b],$

The zoo of isolated neutron stars

NSs are remains of **SNRs explosions** and *presumably* governed by a **single EoS**

Why do they exhibit so many flavours?

Different progenitors
 or formation
 conditions?

- Does one population **evolve** into another?

Other rotation-powered NSs

- Rotating Radio Transients (RRaTs): discovered in 2006 as isolated radio pulses. But pulse separations are not random: regularly slowing down periods ⇒ "intermittent" radio pulsars
- Radio-quiet gamma-ray pulsars: only one (*Geminga*) known before 2008. More than 150 discovered by *Fermi* gamma-ray satellite. Why not detected in radio?

Emission beam much broader in gamma than in radio

Magnetars and radio pulsars

 In magnetars, the internal magnetic field is twisted field decay twists the magnetosphere
 X-rays from magnetospheric currents and bursts (Thompson, Lyutikov & Kulkarni 2002)

The strongest GRB is not a GRB!

Bright spike + pulsating tail (P=7.5 s) Periodicity and position of known SGR Although distance is rather uncertain, $E \sim 10^{46} - 10^{47} erg$

Was it really so bright?

 Saturation of almost all scientific satellites, even if pointing to other directions

Detected by Coronas satellite (with ~2 seconds delay), even if occulted by Earth!

Giant Flare in SGR 1806-20 and Its Compton Reflection from the Moon D. D. Frederiks¹, S. V. Golenetskii¹, V. D. Palshin¹, R. L. Aptekar^{1*}, V. N. Ilyinskii¹, F. P. Oleinik¹, E. P. Mazets¹, and T. L. Cline² ¹lo e Physical-Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, St. Petersburg, 194021 Russia ²Goddard Space Flight Center, NASA, Greenbelt, MD 20771, USA Received August 17, 2006

Magnetar model (Duncan & Thompson 1992)

- Introduced to explain the first Giant Flare (GF, March 5, 1979) and GRBs
- Magnetars are defined as neutron stars powered by magnetic field (B~10¹⁴-10¹⁵ G)
- The strong magnetic field is formed by dynamo processes due to fast rotation (P~1 ms) in proto-NS

$$E_B = \frac{4}{3} \pi R^3 \frac{B^2}{8\pi} \approx 10^{47} \text{ erg } \Rightarrow \text{ can power GF}$$

Magnetar model (Thompson & Duncan 1995; 1996)

- $E_B \sim 10^{47}$ erg can power **persistent** X-ray emission of AXPs and SGRs for >10⁴ yrs
- Bursts generated by magnetic stresses in neutron star crust
- Giant Flares involve large scale magnetic field reconnection
- Spin-down caused by dipole radiation for $B \sim 10^{14}$ - 10^{15} G

Central Compact Objects (CCOs)

- ° Point-like Xray source in young SNR with with no radio/gamma counterpart
- ° Thermal X-ray spectrum (typically the sum of two BBs)
- ° In some cases, **pulsation** (P \approx 0.1 s) and **low spin-down** (B<< 10¹² G) \Rightarrow antimagnetars
- ° Absorption lines in CCO **1E 1207-5209** \Rightarrow **electron cyclotron** features (Bignami et al. 2003)

Let's zoom out....

Crab Nebula

Crab Pulsed SED

Pulsar Wind

Pulsar Wind Nebulae

PWN SED

Cooling times

Fig. 48 SED of broad-band IC gamma-ray emission of the pulsar wind nebula HESS J1825-137 calculated for 12 zones with a constant 6 arcmin width of the zones: 0' - 6', 6' - 12', ... 66' - 72'. The *theoretical curves* are shown together with observational points obtained with the *Suzaku* (the inner 6 zones), *Fermi LAT* (the entire nebula), and HESS (all 12 zones) telescopes [242]

Crab PWN SED

Crab Flares

Fig. 41 Time evolution of the Crab SED during the April 2011 flare. The flare duration of approximately 9 days has been divided in 11 time windows of approximately constant flux. The *dot-dashed line* indicates the assumed constant background from the synchrotron nebula. The *dotted lines* show the flaring component, and the *dashed lines* are the sums of the background and flaring components (from Ref. [110])

Crab Nebula Flares – Sed

