Compact objects



Sirius B
e Sirius B discovered in 1862
* Luminosity : 0.056 sol. Lum.

* Temp. : 25 000° K

e Radius ?




White Dwarfs

Sirius B discovered in 1862
* Luminosity : 0.056 sol. Lum.
Temp. : 25 000° K

L
e R = ~ (0.01R
\ 47074 ©
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White Dwarfs
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Degenerate gas

For a degenerate gas :

ir Ry M 3p

_ 1/3 4
(=) == = pr=(=—)"h |
37 h mp 4tm,, »
radiation : I
gf pressue . |
.. .
; / i
In a ideal gas : T . & I >
2 - 8 non- a
3 /
P N relativistic 1,
E — —K T — / elg;?grx:serat?/./i relativistic
2 2m / 7 1 degenerate
/ I I electrons
/'/. :
[
Therefore : ir ; crystallization |
. |
3P 12 40 1 ek 3]
SmKT :}:} (—) h -2 0 p) I SR

dTm
p A sketch of the density—temperature plane showing the regions in which different types of equation of state are
% applicable. In addition to the regions discussed in the text, the diagram also shows the regions in which radiation
\/_ mK T pressure exceeds the gas pressure and also the region in which the degenerate gas is expected to hecome a solid, that
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is, it represents the melting temperature of the stellar material. The heavy dashed line shows the location of the Sun
from its core to envelope (Kippenhahn and Weigert, 1990).



The Chandrasekhar’s limit

N fermions in star of radius R = n ~ N/R?
Volume per fermion ~ 1/n (Pauli exclusion principle) and
momentum ~ /in'”? (Heisenberg principle)
Fermi energy of fermionic gas in relativistic regime:

E. = pgc~ hn'c ~ heNY3/R
Gravitational energy per fermion:

Eo~-GMmy/R (M=Nmy, most of the mass in baryons)

Equilibrium at a minimum of the total energy function:

E=E,.+E; = hcN"3/R — GNmy*/R



The Chandrasekhar’s limit

E(N) =E, + E_.=hcN"/R — GNmp*/R

For arbitrary large N, E'is always negative = if R decreases, £
continues to decrease = collapse continues indefinitely = M .

For small N, first term dominates (£ > ()) = minimum at £(N)=0
N pax ~ (he/Gmg?)3? ~2x 107 = M, _~N,___mz~1.7 Mg

max X

From this simplified calculation, same M, _for WDs and NSs.

Equilibrium radius: £ .~ mc? in the relativistic regime and m is the
mass of electrons or neutrons, giving WD and NS radius, respectively

E.~hcN'3/R ~mc? R~ h/me(N,,,. )" ~ b/mc (he/Gmg?)"?

max
I

NS radii m,/m , times smaller than WD radii



Stability of Wds and NSs

HW (1958) and OV (1939) equations of state, ignoring nuclear forces.

e | | | | | |
M o0 —
Mz
0.6 — LS —
Stable
. white dwarfs N
0.2 Stable _
= neutron stars
8 10 12 14 16 18 20 22

log p. (kg/m?)
Stability only if mass increase implies larger density

= larger pressure to contrast gravity (P e< p?)



White Dwarfs

« The more mass the star has, the smaller the star

becomes!

« increased gravity makes the star denser

« greater density increases degeneracy pressure to balance

gravity

2.0
Radius decraosas

05 MOss INCreoses

1.f:h'l.fn‘Em white dwarf

1.3M. _ white dwarf

Sun

Q



White Dwarfs
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To determine NS
Equation of State
(EoS) we need to
know the behavior
of matter at
supranuclear
density and use
General Relativity

(GMNS i 0.]—]

NsC
Maximum NS mass
<3 Mg, for any EoS
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Neutrons Stars

Surface layers p< 106 gcm-3

« Atomic polymers of *¢Fe in the form of a close packed solid.

e Strong surface magnetic fields — the atoms become cylindrical, the
matter behaves like a one-dimensional solid

* High conductivity parallel to the magnetic field and zero conductivity
across it.

Outer Crust 106 < p< 4.3x10"11 g cm-3

» Solid region of matter similar to that found in white dwarfs, heavy
nuclei forming a Coulomb lattice embedded in a relativistic degenerate
gas of electrons.

* Inverse B decay increases the numbers of neutron-rich nuclei which
would be unstable on Earth.

Inner Crust 4.3x10"1 < p < 2x10"14 gcm-3

* Lattice of neutron-rich nuclei together with free degenerate neutrons
and a degenerate relativistic electron gas.

* Nuclei begin to dissolve, the neutron fluid provides most of the
pressure.

Neutron liquid phase p > 2x10"14 g cm-3
* Mainly of neutrons with a small concentration of protons and electrons.

Core p=3x10"15gcm-3

* May or may not exist,it depends upon the behaviour of matter in bulk at
very high energies and densities.

* Neutron solid ? quark matter ? ( Camenzind 2007).

43x 10" kgm™3

2x10"kgm™3

Inner crust: nuclei, electrons,
superfluid neutrons

Superfluid neutrons,
superfluid protons,
normal electrons

/|7 mcondensate ?
—— 7 neutron solid ?
/ ? quark matter ?

1.28x 10" kgm ™ -



Neutrons Stars

Surface layers p< 106 gcm-3

* Atomic polymers of *°Fe in the form of a close packed solid.

* Strong surface magnetic fields - the atoms become cylindrical, the
matter behaves like a one-dimensional solid

* High conductivity parallel to the magnetic field and zero conductivity
across it.

Outer Crust 10"6 < p< 4.3x10M11 gcm-3

* Solid region of matter similar to that found in white dwarfs, heavy
nuclei forming a Coulomb lattice embedded in a relativistic degenerate
gas of electrons.

* Inverse (3 decay increases the numbers of neutron-rich nuclei which
would be unstable on Earth.

Inner Crust 4.3x10"1 < p < 2x10"14 gcm-3

* Lattice of neutron-rich nuclei together with free degenerate neutrons
and a degenerate relativistic electron gas.

* Nuclei begin to dissolve, the neutron fluid provides most of the
pressure.

Neutron liquid phase p > 2x10"14 g cm-3
* Mainly of neutrons with a small concentration of protons and electrons.

Core p=3x10"15gcm-3

* May or may not exist,it depends upon the behaviour of matter in bulk at
very high energies and densities.

* Neutron solid ? quark matter ? ( Camenzind 2007).

A NEUTRON STAR: SURFACE and INTERIOR

. ‘wiss ;"H;- e
CORE: il 00 000 o oKilHE
- 1 |
/0000000
| A A

Hoemogeneous !
i P J

Matter
—— ATMOSPHERE
ENVELOPE
CRUST
OUTER CORE
INNER CORE

Neutron
Superfluid

(./
Magnety
field

e
8
"4

s Polar cap

Cone of open
magnetic

x\\ s fi,,es

—
®

Neutron Superfluid
Meutron Superfluid +

P Neutron Vortex  Proton Superconductor
; Neutron Yortex
Magnetic Flux Tube




Mercury orbit precession

® Mercury

Newtonian Gravity Predicts: 5557.62 arcsec/century
Observed Value: 5600.73 arcsec/century

Difference: 43.11 + 0.45 arcsec/century too fast!!



Deflection of starlight

true position
of Star A—~—_

apparent
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of Star A«
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Eddington observation (1919)
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Gravitational Lensing
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Black Holes

Black holes are a fundamental prediction
of the theory of general relativity (GR;
Einstein 1915).

A defining feature of black holes is their
event horizon, a one-way causal boundary
in spacetime from which not even light can
escape (Schwarzschild 1916).

Schwarzschild radius:

2GM M
Rs=f—2= 3—— km

Sun



https://iopscience.iop.org/article/10.3847/2041-8213/meta#apjlab0ec7bib57
https://iopscience.iop.org/article/10.3847/2041-8213/meta#apjlab0ec7bib166







Gereral Relativity

The force of gravity is indistinguishable from the force

due to accelerated motion.
acceleration = const.

“| feel a downward force”

+—"So do I" —}-




Equivalence principle

Light loses energy as it travels away from a source of gravity
: o

-

Equivalent viewpoint: time runs more slowly the
closer you are to a source of gravity!



Gravitational redshift
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Black holes

With a sufficiently large black hole, a freely falling
observer would pass right through the event
horizon in a finite time, would not feel the event
horizon.

A distant observer watching the freely falling
observer would never see him/her fall through the
event horizon (takes an infinite time).

Signals sent from the freely falling observer would
be time dilated and redshifted.



Spaghettification

Probe far from Probe close to black hole
black hole
Black
- N hole
Event

horizon



Black holes

Once inside the event horizon, no communication
with the universe outside the event horizon is
possible.

But incoming signals from external world can enter.

A black hole of mass M has exactly the same
gravitational field as an ordinary mass M at large
distances.



Black holes

@ l >/
By altering angular momentum, we get stable orbits at

different radii: stable circular orbit at a minimum of potential.

At R=6GM/c?*=3R ; the minimum becomes a point of
inflection = Innermost Stable Circular Orbit (ISCO)




Hawking radiation

1. Pairs of virtual particles spontaneously appear
and annihilate everywhere in the universe.

2. If a pair appears just outside a black hole’s
event horizon, tidal forces can pull the pair apart,
preventing them from annihilating each other.

!

e-l'
e~ o v'a!

{

Event horizon

3. If one member of the pair crosses the event
horizon, the other can escape into space, carrying
energy away from the black hole.

Extremely low luminosity (undetectable), but may cause
evaporation of micro-BH (formed at Big Bang?)



Black holes

Three parameters completely describe the structure of a BH

Mass (M)

As measured by the black hole’s effect on orbiting bodies,
such as another star

Total electric charge (Q)

As measured by the strength of the electric force (Q = 0)

Spin = angular momentum (a.)

How fast the black hole is spinning (a.< 1)



Kerr black holes

A rotating black hole has an
ergosphere around the _
outside of the event horizon il

In the ergosphere, space and
time themselves are dragged

along with the rotation of the
black hole

If maximum spin (a,=1):
event horizon at

R:GM/CZZI/Z RS s Ergoregion
R;sco=GM/c*=R

A rotating mass has a tendency to pull space-time along with it



Gravity Probe B

Launched 20 April 2004 to test geodetic and frame-dragging
GR effects, by means of cryogenic gyroscopes in Earth orbit
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M,
M.+ M,
Kepler’s 3rd law becomes:
M, + M,

as
We can also measure :

A, —
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We define mass function :
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Compact objects on binary systems

Neutron Stars Black Holes
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Center of our galaxy:
radio source Sgr A*

Distance: 8 kpc

Highly obscured in
optical

Dense central star
cluster visible in infrared

Photo/illustration from A. Tanner, UCLA




Center of our galaxy:
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Dense central star
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Center of our galaxy:
radio source Sgr A*

Distance: 8 kpc

Highly obscured in
optical

Dense central star
cluster visible in infrared
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A gas cloud on its way towards the supermassive
black hole at the Galactic Centre

T. K. Fritz', E. Quataert’ lig!, A. Burkert™!, I. Cuadra®, F. Eisenhauer', O. Pfuh!l’, K. Dodds-Eden’,

Measurements of stellar orbits'” provide compelling evidence'*
that the compact radio source Sagittarius A* at the Galactic
Centre is a black hole four million times the mass of the Sun.
With the exception of modest X-ray and infrared flare
is surprisingly faint, suggesting that the accretion rate and
efficiency near the event horizon are currently very low**. Here we
report the presence of a dense gas cloud approximately three times
the mass of Earth that is falling into the accretion zone of Sgr A*.
Our observations tightly constrain the cloud’s orbit to be highly
eccentric, with an innermost radius of approach of only ~3,100
times the event horizon that will be reached in 2013, Over the past
three years the cloud has begun to disrupt, probably mainly through
sing from the black hole’s gra
cloud’s d\ namic evolution and radiation in the next fe
probe the prope of the accretion flow and the fe
of the superma ck hole. The kilo-electronvolt X-ray emis-
sion of Sgr A* may brighten significantiy when the cloud reaches
pericentre. There n].w also be a giant radiation flare several years
from now if the cloud breaks up and its fragments feed gas into the
central accretion zone.

40 mpe
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A gas cloud on its way towards the supermassive
black hole at the Galactic Centre

T. K. Fritz', E. Quataert’ ig?, A. Burkert™', I. Cuadra®, F. Eisenhauer’, O. Pfuhl’, K. Dodds-Eden’,

Measurements of stellar orbits'” provide compelling evidence'*

that the compact radio source Sagittarius A* at the Galactic

Centre is a black hole four million times the mass of the Sun.

With the exception of modest X-ray and infrared flare

is surprisingly faint, suggesting that the accretion rate and

efficiency near the event horizon are currently very low**. Here we

report the presence of a dense gas cloud approximately three times

the mass of Earth that is falling into the accretion zone of Sgr A*.

Our observations tightly constrain the cloud’s orbit to be highly

eccentric, with an innermost radius of approach of only ~3,100

times the event horizon that will be reached in 2013. Over the past
ars the cloud has begun to disrupt, p tblv mainly through

sing from the black hole’s grav

cloud’s d\ namic evolution and radiation in the next fe

probe the prope of the accretion flow and the fe

of the superma ck hole. The kilo-electronvol

sion of Sgr A* may brighten significantiy when the

pericentre. There n].w also be a giant radiation flare several years

from now if the cloud breaks up and its fragments feed gas into the

central accretion zone.

.and in 2015



SuperMassive BHs

Accreting supermassive BHs (up to billions of Solar
masses) at the center of galaxies

Black Hole mo'_. i
/ 30pe

Galaxy Center
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M87*  April 11, 2017

April 10

I 1 & 3 | D
Brightness Temperature (107 K)

M87*

V] e ™ % ARl £ 0 1014
Parameter Estimate
Ring diameter 2 d 42 + 3 las
Ring width 2 <20 pas
Crescent contrast S0
Axial ratio & <4:3

Orientation PA 150°-200° east of north
B, = GM [Dc? € 3.8+ 0.4 Uas

o = d/b, g 1133

e (6.5+0.7) X 10° Mg
Parameter Prior Estimate

= (16.8 + 0.8) Mpc
M(stars) € 6.2734 x 10° Mo
M(gas) € 3505 x 10° Mo
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THE M87 BLPICK HOLE
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Simulated M87*

Simulation EHT Reconstruction
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Black holes masses
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