Stars

e Star formation
e Stellar equations
e Stellar evolution

* Final stages of stellar evolution



Star formation



Schmidt-Kennicut law
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Jeans Theory

(a) Perturbation of small size (b) Perturbation of large size

Before

After @
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Green = Hydrg
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Bipolar outflows
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PRC95-24a - ST Scl OPO - June 6, 1995
C. Burrows (ST Scl), J. Hester (AZ State U.), J. Morse (ST Scl), NASA
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Hydrostatic equilibrium

balance between gravity and gas pressure

Fg = G%(T)p(r)d’rdA
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dP
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Stellar Equations

p(r) 1) Hydrostatic equilibrium



Stellar Equations

_Gﬂg?ﬂ)p(?ﬂ) 1) Hydrostatic equilibrium
r
_ 47rr2,o(’r) 2) Conservation of mass



Nuclear reactions

barrier Proton wave

(b) 1Energy Coulomb

— Potential
energy (£p)

Nuclear-force well

o

" T > 10 K would be required
to surmount Coulomb barrier

Barrier
e neration

® Quantum effects (tunnelling)
allow nuclear reactions at
much lower temperatures (low,
and strongly T-dependent,
efficiency) — Energy —

Tunnelling
probabilit




Proton-proton (pp) chain

Most of the nuclear energy from stars is produced by the fusion of four
hydrogen atoms into a helium nucleus: the pp chain

1 1 2 +
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pp Chain

The energy released by the pp chain is simply the mass decrement
between the initial and final nuclei

6'H" — “He™ + 2'H" + 2e' + 2v + 2+

Mass difference between

Energy released initial and final nuclei
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CNO Chain

The CNO cycle commences once the stellar core temperature reaches
1.4 x 107 K and is the primary source of energy in stars of massM>1.5 M,
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Nuclear reatcions

Many nuclear reactions can occur in stars, with relative efficiencies
depending on temperature, density and abundances of chemical elements

= different reactions are dominant in different stages of stellar evolution

Nuclear Fuel Process Threshold Temperature Products
H p-p chain ~4 x10° K He
H CNO cycle 15 x 10° K He
He 30 100 x 10° K C,O
C C+C 600 x 10° K O, Ne, Na, Mg
O O+0 1000 x 10° K Mg, S, P, Si

Si Disintegration 3000 x 10° K Co, Fe, Ni




Nuclear reactions

The energy generation rate € (energy/mass) is proportional to the
number of interactions per second and strongly depends on

temperature:
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Stellar Equations

gfi _Kﬁﬂfﬁﬁ @ 1) Hydrostatic equilibrium
dr 72 P
dﬁjﬁﬂ = d7r? p(r) 2) Conservation of mass
-
dL

3) Energy generation



Opacity: k,=o, /p
e Opacity in a star is a function of composition and temperature.

e Determined by the details of how photons interact with particles
(atoms, ions, free electrons).

e If the opacity varies slowly with A it determines the star continuous
spectrum (continuum). A rapid variation of opacity with A produces
dark absorption lines in the spectrum.



Optically thin cloud: T << 1

e Chances are small that a photon will interact with particle

e Can effectively see right through a cloud

e In the optically thin regime, the amount of extinction

(absorption plus scattering) is linearly related to the amount of
material: double the amount of gas, double the extinction

—> if we can measure the amount of light absorbed (or
emitted) by the gas, we can calculate exactly how much gas
there is



Optically thick cloud: T >> 1

e Certain that a photon will interact many times with particles
before it finally escapes from the cloud

e Any photon entering the cloud will have its direction changed
many times by collisions, which means that its "output"
direction has nothing to do with its "input" direction.

- Cloud is opaque

® You can't see through an optically thick medium; you can
only see light emitted by the very outermost layers.

- you can’t observe interior of a star, but only the surface
(photosphere)

e The spectrum of the radiation emitted by optically thick
material is a blackbody



e Bound-Bound absorption: Small, except at those discrete
wavelengths capable of producing a transition (absorption lines)

e Bound-Free absorption: Photoionisation. Occurs when photon has
sufficient energy to ionize atom. The freed e” can have any energy,

thus this is a source of continuum opacity

e Free-Free absorption: Bremsstrahlung. A free electron absorbs a
photon, causing its speed to increase. It is a source of continuum
opacity and important at high temperatures (it needs free e").

e Electron scattering: Thomson scattering. A photon is scattered,
but not absorbed by a free electron.

e Dust extinction: Only important for very cool stellar atmospheres
and cold interstellar medium



Dust and light

Dust extinction and reddening in astronomical optical/UV observations
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Stellar Equations

E — _GM(T)Q(T) 1) Hydrostatic equilibrium
dr 12
dﬂj(r) _ 47‘;‘?"2'{}(?") 2) Conservation of mass
R
dL
ar = 4mr f?( Je 3) Energy generation
dI’ 3kp

ar _167mc 23 L(?") 4) Energy transport



Energy Transport in the Sun

Radiative
Zone

™ Core energy
generation

In the sun, energy is transported via radiation in
the central regions, but by convection in the outer



Energy Transport inside Stars

e Gt -- _::::-.-- Eniar masses

- 3.5 solar
. masses
, 1 solar
mass 0.8 solar
mass
| D.5 solar
mass

0.2 solar
mass

The structure and evolution of stars is accurately
modeled with only a few well understood laws of physics
= stellar models.



Spectra of stellar photospheres



Stellar spectra

CDﬂtlﬂUUﬂ’I SpEl:trurn u Stellar spectra?

Emission Line Spectrum
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Based on their
absorption lines
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"-.,l.lllllf,.-r _'
ey o . :
== = t 5 F Ine Glrl

Kiss Me"



Procyon (F5)

===

B

[ Ziiiiﬁiiﬁ

i
_
i




Sun (G2)




Arcturus (K1 I1ll)

.

=

I ==
—-—




| | | | 1
T L] EEa N B 550 SO A5 0 LN
Manometers
)
L= 13.8 W
Absorption and Emission
Azl =4 12.73 a¥
of Radiation " =
\ n==:3 12.07 eV
Absorption g Pagohen
.-r", ;%‘
-
9 n== T Ee 10,18 eV
SFETLER
\ E o HYLEOGEM
.='
=&
Bl 5
=1
J Emission
'-' '.”-"”" CErorimd ateta O ey

e

Structure of the H atom = produces spectral features
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Modelled opacity in the UV due to gas at
5,000K (black) and 8,000K (red). The opacities

are due

to lines, mostly HI, Fell, Sill, NI, Ol, Mgll
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A 1 I I
ZEEE 4080 4586

Havelength <{Angstroms)

aEa0o

Balmer series bound-bound
transitions (note the Balmer edge
—> continuous, so bound-free)



The lower the optical
depth, the deeper into
the star we see

For weak lines (lower
optical depth) the
deeper the line
formation region

For strong lines (higher
ol_pltical depth), the
shallower the line
formation region

Chromospherg
Photosphers
Suhphotosphera

Corona
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Temperature structure of solar atmosphere




Wawvelength 393 nm
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Observer

Fofmation of absorption lines on the Sun



Temperature (K)

Formation of absorption features can also be
understood in terms of the temperature of the
local source function decreasing towards the line

centre

200

Height above photosphere (km) Ak (nm)

Relatve flux



Limb Darkening

The Sun [] redder at the edges, also dimmer at the edges...




Consider a uniform slab of gas of thickness L and
temperature T that radiates like a blackbody, with

an absorption coefficient A, which is small
everywhere except at a strong line of frequency
\)0

Compare the emitted intensity in the line relative
to the neighbouring continuum for different
limiting optical thicknesses of the slab



Approach to thermalisation

Blackbody curve

t large T very large

At a given temperature, BB has the largest luminosity
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Spherical BB with T, surrounded by shell with T..
Emission or absorption at vy if a,; << Q47

> TS=> B\)(TC) > B\)(TS)

Case A:

o, Small = 1,;= B, (T,)

I\)O(O) > S\)O (Ts) == B\)O (Ts)

= I\)O = S\)O+ (I\)O(O) - S\)O) e-no > S\)O
dl,o/d Ty = Svo- lvo < 0 = absorption

Case B:
1,(0)=0

I,(T,) =1, (0) en+S,(1-ew)

Case B
<

Case A

l,o< Syo= Byo (T:) = dl,o/dT, o = Syo- l,o > 0 = emission




Loc T4
Why the Main Sequence
is not a straight line?
L=g4xR*OT*

defines lines of constant
radius

Luminosity (L)
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Spherically distributed
Population-II Halo
(several billion
individual stars) .

Space density = R™3 %
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Hertzsprung-Russel Diagram
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Hydrostatic Thermostat

Nuclear fusion reactions are
temperature sensitive:

® Higher Core Temperature =
More Fusion

BUT

® More fusion makes the core
hotter

® Hotter core leads to even
more fusion

Why don't stars explode like
Hydrogen Bombs?

If the reactions run too fast:

® The core heats up = higher
Pressure (P)

® Higher P = expansion

® Expansion cools core, slowing
the rate of fusion

If the reactions run too slow:
® The core cools = lower P
® | ower P = contraction

® Contraction heats core,
Increasing the fusion rate

Result is like a thermostat



Sun’s Structure

B Core

" Where nuclear fusion
occurs

" Envelope
" Supplies gravity to keep
core hot and dense



Main Sequence Evolution

® Fusion changes
® Core gradually s

luminous

® Core starts with same fraction
of hydrogen as whole star

H —> He

nrinks and

Sun gets hotter and more
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Gradual change in size of Sun

Pl The Sun today

4.56 X 10° years ago

Now 6% larger, 5% hotter = 40% brighter



Main Sequence Evolution

When stars Initiate H
burning in their cores, they
are located on the zero-age
main sequence (ZAMS).

As they age, they evolve
slowly away from the
ZAMS.

Most stars, regardless of
their mass, spend roughly
90% of their total lifetimes
as main sequence stars.

10°

101

103

Present sun
Initial sun

| | |

25,000 10,000 4000
Temperature (K)




Red Giant Phase

® He core
" No nuclear fusion

" Gravitational contraction produces
energy

" H layer
" Nuclear fusion

" Envelope
" Expands because of increased
energy production
" Cools because of increased surface
area



Helium fusion

r % |
0‘@ R 2 9 = & —/ene;rgi—

3 ‘He 1 2C

Helium fusion does not begin right away because it requires higher
temperatures than hydrogen fusion—Ilarger charge leads to greater repulsion

Fusion of two helium nuclei doesn’t work, so helium fusion must combine
three He nuclei to make carbon



Broken Thermostat

® As the core contracts,
| H begins fusing to He

main-sequence st in a shell around the

degenerate core

® Luminosity increases
because the core
thermostat is broken
(no nuclear reactions)

star expanding

e = the increasing fusion
rate in the shell does

not stop the core from

contracting




Sun’s Red Giant Phase

Earth Earth

Now: hot core + warm Future: very hot core +
surface; small size. cool surface. Large size




Helium Flash

® He core

" Eventually the core gets hot enough to
fuse Helium into Carbon.

" This causes the temperature to increase
rapidly to 300 million K and there’s a

Q sudden flash when a large part of the
Helium gets burned all at once.

" We don't see this flash because it's
buried inside the star.

" H layer

® Envelope



Movement on HR diagram

a 1. The star shines by shell
10" — hydrogen fusion: The inertf|] 3. Core helium
core shrinks and the fusion begins with
outer layers expand. the helium flash (¥).
— 102 -
b .__Red-
= : iant
- g9
= branch
g
- — 1 —
£
— 2. Luminosity increases
and surface temperature
decreases, so the star
moves up and to the
[ 3 | right on the H-R
diagram (along the red-
giant branch).

16,000 10,000 6000 3000
—-— Surface temperature (K)

Before the helium flash: A red-giant star



® He burning core

" Fusion burns He into C, O
® He rich core

" No fusion

® H burning shell

" Fusion burns H into He
® Envelope




Sun moves onto Horizontal Branch

100,000 — 15Mo
10,000~ —— 7 e Sun burns He into
. - Carbon and Oxygen
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Helium burning in the core stops

H burning is continuous
Hydrogen-

burning shell

Helium-
rich shell

He burning happens in
“thermal pulses”

Helium-
burning shell

Carbon- and
oxygen-rich
core

Core is degenerate




Sun loses mass via winhds

® Creates a “planetary
nebula”

® | eaves behind core of
carbon and oxygen
surrounded by thin shell
of hydrogen

® Hydrogen continues to
burn



Sun moves onto Asymptotic Giant Branch
(AGB)

Planetary
Asymptotic . nebula
giant
branch

7. The star now shines
by shell hydrogen fusion
and shell helium fusion:
The core shrinks and the
outer layers expand.

p— ——
9. Eventually the
star sheds its outer
layers to form a
planetary nebula.

8. Luminosity increases and
surface temperature decreases,
so the star moves up and to the
right on the H-R diagram (along
the asymptotic giant branch).

i

T — 1
16,000 10,000 6000 3000
——— Surface temperature (K)

After core helium fusion ends: An AGB star



Bipolar planetary nebulae

2.The star
then ejects
gas from its
entire surface.

Gas ejected

Star —Q from the
%

star

3.The doughnut
channels the
ejected gas into
two oppositely
directed streams.

1.The star ejects a doughnut-shaped
cloud of gas and dust from its equator.




White dwarf

® Star burns up rest of hydrogen

® Nothing remains but degenerate core of
Oxygen and Carbon

B “White dwarf” cools but does not contract
because core is degenerate

® No energy from fusion, no energy from
gravitational contraction

® White dwarf slowly fades away...



Time line for Sun’s evolution

Core helium fusion and Shell helium
shell hydrogen fusion fusion and shell

Core hydrogen Shell hydrogen hydrogen fusion

fusion fusion
10,000

Helium

flash
\#
Thermal

pulses

Contraction Sunis an

from protostar _ AGB star
Sunisa

Now red giant Sunis a

\ horizontal

2 Sunleaves  pLranch star
Sun joins the the main

main sequence sequence
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Evolution on HR diagram
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Higher mass protostars contract faster
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Higher mass stars spend less time on the main sequence
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Main-Sequence Lifetimes

Surface temperature

Main-sequence lifetime

(K) Spectral class Luminosity (L) (106 years)
25 35,000 O 80,000 3
15 30,000 B 10,000 15
3 11,000 A 60 500
1.5 7000 F 5 3000
1.0 6000 G 1 10,000
0.75 5000 K 0.5 15,000
0.50 4000 M 0.03 200,000




Determining the age of a star cluster

® Imagine we have a cluster of stars that were all formed
at the same time, but have a variety of different

MaSSesS

® Using what we know about stellar evolution is there a
way to determine the age of the star cluster?




For a group of stars formed at the same approximate time,
the more luminous ones evolve faster.
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Age: 30 million years

| | I

| Age: 66 million years
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Cluster age and turn-off point
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Higher mass stars do
not have helium flash

10°
104 —
"©102—
=
> Zero-age
’g main sequence
.E
E -
=1 Stars reach this dashed
line when core hydrogen
fusion comes to an end.
e * = Helium flash (occurs
107" for low-mass stars only)
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Nuclear burning
continues past
Helium

Te30x 100K
T=500x 100K

: T=3,000:x 105K
Hydrogen burning: 10 Myr g

Helium burning: 1 Myr

Carbon burning: 1000 years
Neon burning: ~10 years
Oxygen burning: ~1 year

. Silicon burning: ~1 day

|naIIy builds up an inert lIron core

TOURWNE



Multlple Shell Burning

® Advanced
nuclear burning
proceeds in a
series of nested
shells
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Lanthanide Series

i 58 59 (4] 61 62 63 64 B5 66 67 (ata] 69 70 71
La Ce Pr N Pm Sm Eu Gd Th D Ho Er Tm Yb Lu
— Lanihanum | Cerium  |Praseacymium| Neodymium |Fromethivm | Samarium | Europium | Gadolinium | Terbium | Dysprosiem | Holmium Erbium Thulium | Yiterbium Lutetium
136.906 14012 140.908 144.24 {145) 150.36 151.96 157.25 158975 16250 164.93 167 26 168.934 173.04 174 967

Actinide Series

B9 80 a1 92 B3 a4 85 D6 97 a8 i ] 100 101 102 103

Ac Th Pa U Np Pu Am | Cm Bk Cf Es Fm Md No Lr
Acinium Thorium  (Protactiniem|  Uranium | Repluniom | Phaonom | Americiom | Curium Berkelwm | Californiem | Einsteinium | Fermium | Mendelessum | Nobelism  |Lawrencium

227028 232038 231.036 238029 237.048 [244) (243) (247) [247) (251) [252) 1257) [258) (258) (260)

Advanced reactions in stars make elements like Si, S, Ca, Fe



Why does fusion stop at lron?

F

hydrogen

-n

&
m —
© B
= ]
S |z
[n]
- &
= g
= 3
= <
I:l':l =
2 helium
; carben Figsion releases enerdy uranium

i
oxygen __.._____--"-‘
% lead
[ge]gl
1 1 | 1 | [ 1 | [ | [ 1 | 1 | | 1 1 [ | | 1 1 [ |
) all 100 150 200 250

atomic mass (number of protons and neutrons)



Core collapse

lron core is degenerate and grows until it is too heavy to
support itself

Core collapses and iron nuclei are converted
iInto neutrons with the emission of neutrinos e_

=
N\

o :

neutring

Core collapse stops, neutron star is formed

Rest of the star bounces off the new neutron \
star (also pushed outwards by the neutrinos) ,



Supernova explosion

Shock woves

A Step 1: The iron core of B Step 2: MNeulron- C  Step 3: The shock wove moves
the red giant collopsas rich core rebounds cutward through the star



Neutron capture and beta decay

* Interaction between nuclei and free neutrons (neutron capture)

* Neutrons capture by heavy nuclei is not limited by the Coulomb barrier,
so could proceed at relatively low temperatures.

* If enough neutrons available, chain of reactions:
I(A, Z) +n— | (A+1, Z)

LL(A+1, Z) + n — L (A+2, Z)
L(A+2, Z) + n — I3{A+3, Z) ...etc

* If a radioactive isotope is formed it will undergo B-decay, creating a new
element:

l(A+N, Z) — J(A+N, Z+1) + e+

* If new element is stable, it will resume neutron capture, otherwise may
undergo series of B-decays

J(A+N, Z+1) — K(A+N, Z+2)+ e + v,
K(A+N, Z+2) — L(A+N, Z+3)+ e + ¥V,



s-process and r-process

Stable nuclei may undergo only neutron captures, unstable ones may undergo
both, with the outcome depending on the timescales for the two processes.

Timescales: neutron capture reactions may proceed more slowly or more
rapidly (if many neutrons are available) than the competing -decays:
S-process Or r-process.

Z
Formation of Cobalt from Neutron Capture 'y
D: stable molope D:unamme- Isotope
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Nucleosystesis from
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