# Astronomical instruments



#### **Optical telescopes**





When light strikes the concave primary mirror of the Hubble Space Telescope, it is reflected to the convex secondary mirror, then back through a hole in the center of the primary mirror. There, the light comes to the focal point and passes to one of Hubble's instruments. Telescopes of this design are called Cassegrain telescopes, after the person who designed the first one.

#### Fluxes in the optical and near infrared bands : Magnitudes

Apparent Magnitude :  $m - m_0 = -2.5 Log_{10}(F/F_0)$ Absolute Magnitude :  $M = m - 5 \ Log \frac{D}{10 \ pc}$ 



#### Very Large Telescope



#### Adaptive optics



#### **Extremely Large Telescope**



#### **Astronomical Mirrors**



#### Atmosphere transparency



![](_page_10_Picture_0.jpeg)

![](_page_11_Picture_0.jpeg)

![](_page_12_Picture_0.jpeg)

## ALMA as an Interferometer

#### 66 antennas working as one radiotelescope. Is as if we had a 15km radiotelescope.

![](_page_13_Picture_2.jpeg)

# How interferometry works

![](_page_14_Picture_1.jpeg)

![](_page_14_Picture_2.jpeg)

One antenna the resolution goes  $\lambda/D$ , where D is the diameter of the antenna.

Two antennas the resolution goes  $\lambda/B$ , where B is the baseline between the two antennas.

# How interferometry works

![](_page_15_Figure_1.jpeg)

## ALMA bands

Chajnantor - 5000m, 0.25mm pwv

![](_page_16_Figure_2.jpeg)

# Main molecules per band

| ALMA Band | Frequency (GHz) | Main Lines          |
|-----------|-----------------|---------------------|
| 1         | 31 - 45         |                     |
| 2         | 67 - 90         |                     |
| 3         | 84 - 116        | CO(1-0)             |
| 4         | 125 - 163       | H <sub>2</sub> O    |
| 5         | 163 - 211       |                     |
| 6         | 211 - 275       | CO (2-1)            |
| 7         | 275 - 373       | CO (3-2), [CII] z=5 |
| 8         | 385 - 500       | CO (4-3), [CII] z=3 |
| 9         | 602 - 720       | CO (6-5), [CII] z=2 |
| 10        | 787 - 950       | CO (7-6), CO (8-7)  |

![](_page_18_Figure_0.jpeg)

#### Found 15 lines in ALMA Band 3 (84-116 GHz), showing 1 - 15 Click on the chemical formula below for more information about that species.

|    | Species               | Chemical<br>Name   | Ordered Freq (GHz)<br>(rest frame, redshifted) | Resolved QNs        | CDMS/JPL<br>Intensity | Lovas/AST<br>Intensity | E <sub>L</sub> (cm <sup>-1</sup> ) | E <sub>L</sub> (K) | Linelist |
|----|-----------------------|--------------------|------------------------------------------------|---------------------|-----------------------|------------------------|------------------------------------|--------------------|----------|
| 1  | H <sub>2</sub> CO     | Formaldehyde       | 85.31068, 85.31068                             | 50( 6,44)-50( 6,45) | -11.01730             |                        | 3390.2754                          | 4877.8220          | CDMS     |
| 2  | SiO v = 0             | Silicon Monoxide   | 86.84696, 86.84696                             | 2-1                 | -2.48320              | 1.5                    | 1.4485                             | 2.0841             | CDMS     |
| 3  | H <sub>2</sub> CO     | Formaldehyde       | 89.56506, 89.56506                             | 13(2,11)-13(2,12)   | -4.78500              |                        | 253.2493                           | 364.3672           | CDMS     |
| 4  | H <sub>2</sub> CO     | Formaldehyde       | 89.93780, 89.93780                             | 45(2,43)-44(4,40)   | -10.82770             |                        | 2564.5250                          | 3689.7582          | CDMS     |
| 5  | H <sub>2</sub> CO     | Formaldehyde       | 95.93231, 95.93231                             | 31(4,27)-31(4,28)   | -6.77550              |                        | 1338.2468                          | 1925.4276          | CDMS     |
| 6  | $C\overline{S} v = 0$ | Carbon Monosulfide | 97.98095, 97.98095                             | 2 - 1               | 0.00000               | 6.94                   | 1.6340                             | 2.3509             | SLAIM    |
| 7  | H <sub>2</sub> CO     | Formaldehyde       | 100.51110, 100.51110                           | 22(3,19)-22(3,20)   | -5.00180              |                        | 689.1894                           | 991.5841           | CDMS     |
| 8  | H <sub>2</sub> CO     | Formaldehyde       | 101.33299, 101.33299                           | 6(1,5)-6(1,6)       | -4.04410              | <0.1                   | 57.4804                            | 82.7010            | CDMS     |
| 9  | H <sub>2</sub> CO     | Formaldehyde       | 104.15793, 104.15793                           | 41(5,36)-41(5,37)   | -8.16510              |                        | 2298.5855                          | 3307.1328          | CDMS     |
| 10 | H <sub>2</sub> CO     | Formaldehyde       | 104.93181, 104.93181                           | 51(6,45)-51(6,46)   | -11.11150             |                        | 3514.0612                          | 5055.9211          | CDMS     |
| 11 | C18O                  | Carbon Monoxide    | 109.78218, 109.78218                           | 1-0                 | 0.00000               | 2.1                    | 0.0000                             | 0.0000             | SLAIM    |
| 12 | 13CO y = 0            | Carbon Monoxide    | 110.20135, 110.20135                           | 1-0                 | -5.06620              | 9.3                    | 0.0000                             | 0.0000             | CDMS     |
| 13 | H <sub>2</sub> CO     | Formaldehyde       | 110.93421, 110.93421                           | 21(3,18)-22(1,21)   | -6.30110              |                        | 634.5972                           | 913.0386           | CDMS     |
| 14 | C170                  | Carbon Monoxide    | 112.35928, 112.35928                           | J= 1- 0             | 0.00000               | 0.20                   | 0.0000                             | 0.0000             | SLAIM    |
| 15 | CO y = 0              | Carbon Monoxide    | 115.27120, 115.27120                           | 1-0                 | 0.00000               | 60.0                   | 0.0000                             | 0.0000             | SLAIM    |
|    |                       |                    |                                                |                     |                       |                        |                                    |                    |          |

Found 15 lines in ALMA Band 3 (84-116 GHz), showing 1 - 15

# ALMA discoveries

 The sharpest image ever taken by ALMA. It shows the protoplanetary disc surrounding the young star HL Tauri. These new ALMA observations reveal substructures within the disc that have never been seen before and even show the possible positions of planets forming in the dark patches within the system.

![](_page_19_Picture_2.jpeg)

![](_page_20_Picture_0.jpeg)

#### Fluxes in the Radio band

![](_page_21_Figure_1.jpeg)

![](_page_22_Picture_0.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_26_Figure_0.jpeg)

Gamma-rays telescopes

#### X-rays telescopes

![](_page_28_Figure_1.jpeg)

![](_page_29_Figure_0.jpeg)

## HEAD A-1 ALL-SKY X-RAY CATALOG

![](_page_30_Figure_2.jpeg)

#### X-rays telescopes in space

![](_page_31_Picture_1.jpeg)

![](_page_31_Picture_2.jpeg)

![](_page_31_Picture_3.jpeg)

Chandra Xrays Observatory (NASA) 1999 -

Energy range : < 10 keV Ang. Res : 0.5"

#### XMM-Newton Telescope (ESA) 2000 -

Energy range : < 15 keVAng. Res : 5'' - 10''

NuSTAR (NASA) 2014 -

Energy range : < 80 keV Ang. Res : 10 "

#### **Coded Mask Telescopes**

![](_page_32_Picture_1.jpeg)

![](_page_32_Picture_2.jpeg)

#### **Photons interaction with matter**

![](_page_33_Figure_1.jpeg)

- $\mu ph \rightarrow photoelectric effect,$
- $\mu cs \rightarrow$  Compton scattering,
- $\mu ca \rightarrow Compton absorption$
- $\mu p \rightarrow pair production.$
- $\mu a \rightarrow$  total mass absorption coefficient ( $\mu a = \mu ph + \mu p + \mu ca$ )
- $\mu \rightarrow$  total mass attenuation coefficient ( $\mu = \mu ph + \mu p + \mu c$  where  $\mu c = \mu cs + \mu ca$ ).

(from Grupen, Particle Detectors)

#### Astronomical bands

![](_page_34_Figure_1.jpeg)

![](_page_35_Figure_0.jpeg)

#### **Compton Telescopes**

![](_page_36_Figure_1.jpeg)

![](_page_36_Picture_2.jpeg)

![](_page_36_Picture_3.jpeg)

En. range : 0.75 - 30 MeV Ang. Res : few deg

#### The MeV sky

![](_page_37_Figure_1.jpeg)

En. range : > 30 MeV

Ang. Res : few deg / E

![](_page_38_Figure_3.jpeg)

#### **Detection in pair production telescopes**

![](_page_39_Picture_1.jpeg)

the pair conserves p and E

but:

# Only projection information Multiple Scattering Noise hits

![](_page_39_Figure_5.jpeg)

![](_page_39_Figure_6.jpeg)

#### **Multiple scattering**

#### Moliere formula :

$$\theta_{rms} = \frac{13.6}{E_{c}[MeV]} \sqrt{\frac{z}{X_{0}}} \left(1 + 0.038 \ln \frac{z}{X_{0}}\right)$$

![](_page_40_Figure_3.jpeg)

![](_page_40_Figure_4.jpeg)

#### • Measure of MS angles along the track and crossed thickness

- Three-dimensional track reconstruction
- Energy loss (bremsstrahlung and ionization)

#### **Track reconstruction - Kalman F.**

![](_page_41_Figure_1.jpeg)

![](_page_41_Figure_2.jpeg)

#### **Angular Resolution**

![](_page_42_Figure_1.jpeg)

![](_page_43_Picture_1.jpeg)

![](_page_43_Picture_2.jpeg)

## SAS 2 (NASA)

1973 - 1974

![](_page_43_Picture_5.jpeg)

![](_page_44_Picture_1.jpeg)

![](_page_45_Picture_1.jpeg)

GCRO/EGRET (NASA)

1991 - 2000

![](_page_46_Picture_0.jpeg)

![](_page_46_Picture_1.jpeg)

|             |              | 7 |
|-------------|--------------|---|
|             |              |   |
| AGILE (ASI) |              | 1 |
| (2007 - )   | Fermi (NASA) |   |
|             | (2008 - )    | * |
|             |              |   |
|             |              |   |
|             |              |   |

#### **The GeV Sky**

![](_page_48_Picture_1.jpeg)

#### **Existing Cherenkov Telescopes**

![](_page_49_Picture_1.jpeg)

#### **HESS telescope**

H.E.S.S consists currently of 4 telescopes arranged in a square with 120 m side length and provide multiple <u>stereoscopic view of air showers</u>.

Each telescope consists of a dish with an effective area of 107  $m^2$  and a camera.

The mirrors collect <u>Cherenkov light from air</u> <u>showers</u> and focus it onto the camera.

Maximum slewing speed: 100°/ min.

![](_page_50_Picture_5.jpeg)

![](_page_50_Picture_6.jpeg)

The Davies Cotton telescopes have a focal length of 15 m and a reflectivity of  $\sim$ 80 %.

#### Air showers with a single telescope

![](_page_51_Picture_1.jpeg)

![](_page_51_Picture_2.jpeg)

Air showers from gamma rays with E > 100 GeV develop at a height of about 10 km. A pool of Cherenkov light from the shower with a radius of ~120 m reaches the ground.

The image of the shower can be seen as a single track with the camera of one telescope.

#### Air showers with a single telescope

![](_page_52_Figure_1.jpeg)

#### **Stereoscopic Observation of an Air Shower**

![](_page_53_Figure_1.jpeg)

#### **Air Shower Image Projection**

![](_page_54_Figure_1.jpeg)

(figures taken from the Ph.D. thesis by Oliver Bolz, Ludwigshafen 2004) The image of the air shower that is projected onto the camera has the form of an ellipse.

In the reconstruction of the air shower, one fits an elliptical form to the image to extract the "Hillasparameters" that characterize the air shower. Two important parameters are the width and the length of the ellipse.

One also takes into account the distribution of intensities over the PMTs that are part of the image.

![](_page_54_Figure_6.jpeg)

In the image shown here, the red pixel has the largest number of photoelectrons. It indicates the direction of the shower core.

#### **Reconstruction of the Direction of the Air Shower**

![](_page_55_Figure_1.jpeg)

The stereoscopic observation provides information on the direction of the air shower.

All telescopes point at the same direction in the sky, so we can superpose the images from the air shower seen in different cameras.

#### **Reconstruction of the Direction of the Air Shower**

![](_page_56_Figure_1.jpeg)

In this case, the air shower came directly from the direction the telescopes are pointing at.

If they are pointing at a known source, one would identify the shower with a photon from that source.

The angular resolution of H.E.S.S. is a few arc minutes.

#### **Reconstruction of the Shower Impact Point**

![](_page_57_Figure_1.jpeg)

Geometrical determination of the shower impact point on the ground provides a better understanding of the shower geometry.

This is very useful for the energy reconstruction of the event.

#### **Reconstruction of the Shower Energy**

## The energy of the primary particle, i.e. the $\gamma$ -ray, is determined from the total recorded signal size, which can be converted into a flux of Cherenkov photons.

Once the geometry of the air shower – i.e. the inclination of the shower axis and the impact point – has been determined, one compares the recorded signal to lookup tables.

These lookup tables are generated with Monte Carlo simulations of  $\gamma$ -ray induced air showers at different energies and geometries. They contain lateral distributions of Cherenkov photon densities for each simulated shower.

A comparison of the recorded signal size and the simulated photon fluxes provides the energy of the observed shower.

The energy resolution of H.E.S.S. is on the order of 15 %.

#### **Background - Muons**

![](_page_59_Figure_1.jpeg)

Muons that hit the telescope leave a ring-shaped Cherenkov light signal and are easily identifiable. Muons that pass the telescope at some (not too large) distance can leave a signature that is not easy to distinguish from the image of an air shower. Due to the large muon flux in the atmosphere, this is a considerable source of background.

Muons can however be rejected by requiring at least two telescopes to be triggered simultaneously.

![](_page_59_Figure_4.jpeg)

![](_page_59_Figure_5.jpeg)

## **Background - Hadronic Showers**

Hadronic showers do not leave a clear track. They look more like a "blob". When fitting an ellipse to the image, the width of the ellipse is usually larger than in the case of a  $\gamma$ -ray shower.

One rejects hadronic showers by applying a cut on the observed width.

![](_page_60_Figure_3.jpeg)

![](_page_60_Figure_4.jpeg)

![](_page_60_Figure_5.jpeg)

#### **Galactic Plane Survey**

![](_page_61_Figure_1.jpeg)

Galactic Longitude (deg.)

#### All sky telescopes - Milagro

![](_page_62_Picture_1.jpeg)

located near Los Alamos, NM, USA; altitude 2650 m

- a pond of size 80m x 60m x 8 m filled with pure water
- 175 tanks in a larger array
- 2 layers of PMTs (723 in total) observe Cherenkov light from air shower particles
- upper layer: electrons, positrons lower layer: muons

#### All sky telescopes: Milagro

100% duty cycle, very large field of view (~ 1 sr), good sensitivity at TeV energies => ideal for all (northern) sky survey of gamma-ray sources

Only 0.8 degree angular resolution, higher energy threshold than IACTs

=> complementary method to IACTs and satellites; similar method used by ARGO (Tibet)

![](_page_63_Picture_4.jpeg)

#### **Future Projects**

#### **Cherenkov Telescope Array (CTA):**

A joint project of the gamma-ray groups (HESS, MAGIC, etc.). The idea is to have a large array with many telescopes to increase sensitivity.

#### **Future Projects**

![](_page_65_Figure_1.jpeg)

#### <u>Cherenkov</u> <u>Telescope</u> <u>Array (CTA)</u>:

A joint project of the gamma-ray groups (HESS, MAGIC, etc.). The idea is to have a large array with many telescopes to increase sensitivity.

#### <u>High Altitude Water Cherenkov</u> <u>array (HAWC):</u>

next generation of the Milagro style detectors, larger effective area, higher altitude (lower E threshold)

![](_page_66_Picture_0.jpeg)

![](_page_67_Figure_0.jpeg)

![](_page_68_Figure_0.jpeg)

LIGO, NSF, Illustration: A. Simonnet (SSU)

INSPIRAL

RINGDOWN

MERGER

HANFORD, WASHINGTON LIVINGSTON, LOUISIANA

![](_page_70_Figure_0.jpeg)