Accretion in binary systems

Compact star M , normal star M with M,< M

M 2 + M 1

Normal star expanded or binary separation decreased => normal star feeds

compact star



Test particle in binary system: equipotential surface

5 equilibrium points: Lagrangian points

If a star fills its Roche lobe = mass transfer = accretion
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a) initial gas
stream

d) disk is formed

b) formation of
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Matter circulates around the compact object:

ngular moment increase
outwards

matter
inwards




Material transferred has high angular
momentum so must lose it before accreting =>
disk forms

Gas loses angular momentum through
collisions, shocks, viscosity and magnetic fields:
kinetic energy converted into heat and radiated.

Matter sinks deeper into gravity of compact
object
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N Converts shear to heat

X Heat radiated away

X Energy being lost

= Gas sinks deeper in
the potential well
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For most accretion disks, total mass of gas in the disk is << M so we
may neglect self-gravity

Hence the disk material is in circular Keplerian orbits with angular velocity

2 = (GM/R3)/2 = v/R

Energy of particle with mass m in the Kepler orbit of radius R just grazing the compact

object is
1 1 GM 1
—my’ =—m =—F_.
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Gas particles start at large distances with negligible energy, thus
GMM 1
2R = 2 LClCC
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The other half of the accretion luminosity
is released very close to the star.
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(1998) Mark A. Garlick



CENTAURUS X-3: A HIGH MASS X-RAY BINARY

X-Ray emission: pulses
48s.

seconds

Accretion disk

—Pulsar magnetosphere




M= 6 M,
R = 2GM/c?= 18 km

E=GMm/R = 0.5 mc?
m=1g=
Ex~4x 1020e09

N =

E=8x 1033¢m

= |f energy released in
seconds/minutes: GRB luminosity
(collapsar model)
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Accretion rate: M (measured in [g/s] or [M,,,,

GMM
Accretion luminosity: L, = [erg/s]

Maximum accretion rate onto a neutron star:

: L, R
~ 38 _ g NsTY -8
Ly ®1.8x10™ ergls = M, \ = #1.5x107 M,

Maximum accretion onto a supermassive ( ) black hole:

L, v ~10* ergls = M, ;v ~05 M

o/yr



Define temperature T  such that hv ~ kT

Define ‘effective’' BB temp T
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Optically-thick flow:

Trad = Tb
Optically-thin flow:
T Trad = T;h



In general,
g 1, =1 ., <1,

r L

For a neutron star:

GMm -
T, = L ~7.5%x10""K
3kR
> 1/4
7, =(L, . /4ntR°0) =2x10"K
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Thus expect photon energies in range:

1 keV<hv <100 MeV

Similarly for a stellar mass black hole

For whitedwarf, | ~ 10 erg/s M ~ R=5x10 cm,

1 ec <hv <100 keV

=> optical, UV, X-ray sources

Accreting White Dwarfs in binary systems are called Cataclismic Variables (CVs)
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