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Shapley’'s Globular Cluster Distribution
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The MilkyWay galaxy
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A large SBb (or SBc) .
spiral galaxy with ongoing
star formation ,' 2 L .
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Stellar population

halo population 11

intermediate population II

disc population I/I1

intermediate population I
—— extreme population I D>




Spherically distributed
Population-II Halo
(several billion
individual stars) .
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The 5 phases of the Interstellar matter
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The Interstellar Medium

Interstellar Matter

« Molecular Clouds

* Neutral Hydrogen

* HIlregions

Dust
InterStellar Radiation Field

« Stars,
¢ Dust
+ CBM

Magnetic Field
Cosmic Rays



Energy density of the ISM
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Orbital Velocity (arb.)
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Galactic Rotation Curve

Galaxy Rotation Curve
Credit: Matthew Mewby, Milkyway@home

Observed

Dark Matter

Radius, v (kpc)

e ) Expected
R ng, o By _ _ _ Disk (light)
Bulge (light) |
2 4 6 ) 10 12 14




Disk of
the Galaxy
(top view)

Spiral arm

Imagine four stars that lie Galactic
along a line extending from center
the galactic center. The stars
have roughly the same orbital
speeds but travel in orbits of
different sizes.

ABCD

When star A has completed
1 of an orbirt, stars B, C, and
D have only completed ! or
less of an orbit.

After one orbit of star A,
star B has completed only
1 an orbit and stars C and

D have fallen farther behind.

As star A completes its second
orbit, the spiral continues to
wind tighter.




FPS: 55

Timez 1.42e+02 y
RadCorez 0 po
RadGal axy: 132000 po
RadFarField: 26000 pc
ExInner: 0,85
ExOuter: 0,80
Sigmaz: 0,50
AngOff: Q0004 degspo




Hot O and B Regions of
~ stars with  star formation
HII regions

assnclatlnnv

Fast motion of-
~interstellar gas and .
“dust — this material
is compressed within’

. the spiral arm
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Radio Continuum (408 MHz)

Intensity of radio continuum emission from high-energy charged particles in the Milky Way,from surveys with ground-based radio
telescopes (Jodrell Bank Mark | and Mark IA, Bonn 100-meter, and Parkes 64-meter).

At this frequency, most of the emission is from electrons moving through the interstellar magnetic field at nearly the speed of light.

Shock waves from supernova explosions accelerate electrons to such high speeds, producing especially intense radiation near these
sources.

Emission from the supernova remnant Cas A near 110° longitude is so intense that the diffraction pattern of the support legs for the radio
receiver on the telescope is visible as a cross shape.



Radio emission of the Galaxy

Radio surveys & WMAP

Radio Ground-based Surveys: 22 MHz — 5 GH=z
WMAP: 23 - 94 GHz ... Planck: 30 - 800 GHz
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synchrotron spectral index

Radio emission of the Galaxy

Synchrotron spectral index measurements ...
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The magnetic field

Ordered, large-scale magnetic field
B = 2 -6 microGauss

Explored with:

 Radio continuum
« Starlight polarization
 Faraday Rotation

« Zeeman splitting



The magnetic field




The magnetic field




Atomic Hydrogen (1.4 GHz)

Column density of atomic hydrogen,derived on the assumption of optically thin emission, from radio surveys of the 21-cm
transition of hydrogen.

The 21-cm emission traces the "cold and warm" interstellar medium, which on a large scale is organized into diffuse clouds of
gas and dust that have sizes of up to hundreds of light-years.

Most of the image is based on the Leiden-Dwingeloo Survey of Galactic Neutral Hydrogen using the Dwingeloo 25-m radio
telescope; the data were corrected for sidelobe contamination in collaboration with the University of Bonn.


https://astro.uni-bonn.de/en
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Neutral Hydrogen (HI)

Hydrogen hyperfine
structure
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Neutral Hydrogen Survey

Leiden-Dwingeloo survey at 21 cm
(Hartmann et al 1997)

Spatial resolution: 30’
Velocity resolution: 1.03 km/s

Velocity range: -450,400 km/s
Sensitivity: 0.07° K




Intensity vs column density
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Neutral Hydrogen

Leiden-Dwingeloo survey at 21 cm (Hartmann et al 1997)



Neutral Hydrogen

Leiden-Dwingeloo survey + Parkes (Kerr et al 1986)



Lockman Hole
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Orbital Velocity (arh.)
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Radio Data deprojection

Galaxy Rotation Curve
Credit: Matthew Newby, Milkyway@haome
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Radio Data deprojection
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Near-Far distance ambiguity:

Z,.s =100 pc  for HI

Z,.s =60 pc  forH,
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ABSTRACT

Context. The spiral structure of the Milky Way is not yet well determined. The keys to understanding this structure are to increase
the number of reliable spiral tracers and to determine their distances as accurately as possible. HII regions, giant molecular clouds
(GMCs), and 6.7 GHz methanol masers are closely related to high mass star formation, and hence they are excellent spiral tracers.
The distances for many of them have been determined in the literature with trigonometric, photometric and/or kinematic methods.
Aims. We update the catalogs of Galactic HII regions, GMCs, and 6.7 GHz methanol masers, and then outline the spiral structure of
the Milky Way.

Methods. We collected data for more than 2500 known HII regions, 1300 GMCs, and 900 6.7 GHz methanol masers. If the photo-
metric or rrigonometric distance was not yet available, we determined the kinematic distance using a Galaxy rotation curve with the
current IAT standard, Ry = 8.5 kpc and @y = 220 km 57!, and the most recent updated values of Ry = 8.3 kpc and &g = 239 km 5 L,
after velocities of tracers are modified with the adopted solar motions. With the weight factors based on the excitation parameters of
HII regions or the masses of GMCs, we get the distributions of these spiral tracers.

Results. The distribution of tracers shows at least four segments of arms in the first Galactic quadrant, and three segments in the
fourth quadrant. The Perseus Arm and the Local Arm are also delineated by many bright HII regions. The arm segments traced by
massive star forming regions and GMCs are able to match the HI arms in the outer Galaxy. We found that the models of three-arm
and four-arm logarithmic spirals are able to connect most spiral tracers. A model of polynomial-logarithmic spirals is also proposed,
which not only delineates the tracer distribution, but also matches the observed tangential directions.

Key words. Galaxy: disk — Galaxy: structure — Galaxy: kinematics and dynamics — HII regions — ISM: clouds
e Data
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Fig. 15. Left: distributions of HII regions, GMCs, and 6.7 GHz methanol masers projected into the Galactic plane. The symbols are the same as
those in Fig. 2. The kinematic distances are estimated using the rotation curve of BB93. Right: color intensity map of spiral tracers. The IAU
standard R, = 8.5 kpc and ®; = 220 km s~! and standard solar motions are adopted in deriving the kinematic distances if no photometric or

trigonometric distance is available.
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Radio Continuum (2.4 - 2.7 GHz)

Intensity of radio continuum emission from hot, ionized gas and high-energy electrons in the Milky Way, from surveys with
both the Bonn 100-meter, and Parkes 64-meter radio telescopes.

Unlike most other views of our Galaxy presented here, these data extend to latitudes of only 5° from the Galactic plane.

The majority of the bright emission seen in the image is from hot, ionized regions, or is produced by energetic electrons
moving in magnetic fields.

The higher resolution of this image, relative to the 408 MHz picture above, shows Galactic objects in more detail.

Note that the bright "ridge" of Galactic radio emission, appearing prominently in the 408 MHz image, has been subtracted
here in order to show Galactic features and objects more clearly.



lonized Hydrogen (HiIl)

Two phase medium in pressure balance

Warm (6000-12000 K)
Photoionized by hot young stars
n=1cm:3

Hot (10¢ K)
n=102cm3
Buoyancy
Local bubble



Molecular Hydrogen (115 GHz)
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Column density of molecular hydrogen inferred from the intensity of the J =1-0 spectral line of carbon monoxide, a standard
tracer of the cold, dense parts of the interstellar medium.

Such gas is concentrated in the spiral arms in discrete "molecular clouds."
Most molecular clouds are sites of star formation.

The molecular gas is pre-dominantly H , but H_ is difficult to detect directly at interstellar conditions and CO, the second most
abundant molecule, is observed as a surrogate.

The column densities were derived on the assumption of a constant proportionality between the column density of H_ and the
intensity of the CO emission.



CO emission
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CO Survey
(Dame et al. 2001)

CO observation

] 150 115 GHz

31 survey combined

Spatial resolution: 12’ or more
Velocity resolution: 0.65 km/s

Sensitivity: 0.62° K

X=n,/l,=1.810% cm2Klkm's




Hydrogen distribution

Hl density :

T.= 125K

Molecular Clouds density :
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The molecular clouds
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Infrared (12-100 microns)

3B
&

Composite mid-and far-infrared intensity observed by the Infrared Astronomical Satellite (IRAS) in 12, 60, and 100 micron
wavelength bands.

The images are encoded in the blue, green, and red color ranges, respectively.

Most of the emission is thermal, from interstellar dust warmed by absorbed starlight, including star-forming regions embedded
in interstellar clouds.

The display here is a mosaic of IRAS Sky Survey Atlas images.

Emission from interplanetary dust in the solar system, the "zodiacal emission," was modeled and subtracted in the production
of the Atlas.


http://irsa.ipac.caltech.edu/Missions/iras.html

DUST

Cold Dust (15-25 K) associated to the HI regions and
molecular clouds. Heated by both old and young stellar
population

Warm dust (30-40 K) associated to Hil regions. Heated
by OB stars

Hot dust (250-500 K)
very small grains ( 5 A) heated by ISRF
normal grains (1 micron) heated by M giants



Mid-Infrared
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Mid-infrared emission observed by the SPIRIT Il instrument on the Midcourse Space Experiment (MSX) satellite.

Most of the diffuse emission in this wavelength band is believed to come from complex molecules called polycyclic aromatic
hydrocarbons, which are commonly found both in coal and interstellar gas clouds.

Red giant stars, planetary nebulae, and massive stars so young that they remain deeply embedded in their parental molecular
gas clouds produce the multitude of small bright spots seen here.

Unlike most of the other maps, this map extends only to 5° above and below the Galactic plane.



Near Infrared (1.25-3.5 microns)

Composite near-infrared intensity observed by the Diffuse Infrared Background Experiment (DIRBE) instrument on the
Cosmic Background Explorer (COBE) in the 1.25, 2.2, and 3.5 micron wavelength bands.

The images are encoded in the blue, green, and red color ranges, respectively.

Most of the emission at these wavelengths is from relatively cool giant K stars in the disk and bulge of the Milky Way.
Interstellar dust does not strongly obscure emission at these wavelengths; the maps trace emission all the way through the
Galaxy, although absorption in the 1.25 micron band is evident toward the Galactic center region.


http://lambda.gsfc.nasa.gov/product/cobe/

Interstellar Radiation Field

Cosmic Background Radiation

Model of the Interstellar Radiation Field

Far Infrared (dust)
Near Infrared (late stars)
Optical/UV (OB stars)

ISRF model :

B € from COBE/DIRBE emissivities +
detailed stellar model

k from extinction curves, grain albedo
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Optical (400-600 nm)
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Due to the strong obscuring effect of interstellar dust,the light is primarily from stars within a few thousand light-years of the
Sun, nearby on the scale of the Milky Way.

The widespread bright red regions are produced by glowing, low-density gas.
Dark patches are due to absorbing clouds of gas and dust.

Stars differ from one another in color, as well as mass, size and luminosity. Interstellar dust scatters blue light preferentially,
reddening the starlight somewhat relative to its true color and producing a diffuse bluish glow. This scattering, as well as
absorption of some of the light by dust, also leaves the light diminished in brightness.

The panorama was assembled from sixteen wide-angle photographs taken by Dr. Axel Mellinger using a standard 35-mm
camera and color negative film. The exposures were made between July 1997 and January 1999 at sites in the United States,
South Africa, and Germany.



X Rays (0.25-1.5 keV)

Composite X-ray intensity observed by the Position-Sensitive Proportional Counter (PSPC) instrument on the
Rontgen Satellite (ROSAT).

Images in three broad, soft X-ray bands centered at 0.25, 0.75, and 1.5 keV are encoded in the red, green, and blue color
ranges, respectively.

In the Milky Way, extended soft X-ray emission is detected from hot, shocked gas.

At the lower energies especially, the interstellar medium strongly absorbs X-rays, and cold clouds of interstellar gas are seen
as shadows against background X-ray emission.

Color variations indicate variations of absorption or of the temperatures of the emitting regions. The black regions indicate
gaps in the ROSAT survey.


http://www.mpe.mpg.de/xray/wave/rosat/index.php?lang=en

Gamma Rays (E>300 MeV)

Intensity of high-energy gamma-ray emission observed by the Energetic Gamma-Ray Experiment Telescope (EGRET)
instrument on the Compton Gamma-Ray Observatory (CGRO).

The image includes all photons with energies greater than 300 MeV. At these extreme energies, most of the celestial gamma
rays originate in collisions of cosmic rays with hydrogen nuclei in interstellar clouds.

The bright, compact sources near Galactic longitudes 185°, 195°, and 265° indicate high-energy phenomena associated with
the Crab, Geminga, and Vela pulsars, respectively.


http://cossc.gsfc.nasa.gov/docs/cgro/egret/
http://cossc.gsfc.nasa.gov/
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Gamma rays /| CR connections
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Results from EGRET

n® bump in the inner Milky Way
(Hunter et al. 1997)
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Results from EGRET

Spatial correlation between gaz and vy-rays
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CObzervations (EGRET):

- large scale spatial distribution well moedelled by combination of ISM phases (assuming I = p“)
- fraction of unresclved point sources is small {unless distributed like the interstellar gas)

- spectrum does not vary (within relatively small uncertainties) in the Galasoy

- deviations from perfect fit

Implications:
+ Gamma-Rays probe galactic CR and ISM distributions
+ CR electron-to-proton ratie roughly constant throughout Galasy
- assumgtion of dynamic balance (I = p°) between ISM and CR is reasenably cerrect
(large matter density implies larger magnetic fields, allowing for larger CR energy density)



Galactic diffuse gamma rays

EGRET E > 100MeV
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Fig. 6.10. A comparison between the yray emissivity gradient (solid histogram)
to the distribution of SNR as possible acceleration sites (dotted line). The statis-
tical uncertainties of the gradient are typically below 10%. The obvious discrepancy
implies that either SNR are not accelerating the bulk of GeV cosmic rays, or diffu-
sive re-acceleration is operative, or galactic cosmic rays are confined on a scale of
many kpec's. Note that locally derived emissivities (dashed histogram) can differ
significantly from the global trend. From Strong and Mattox (1996 |528])



Galactic diffuse gamma rays

Protons
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Molecular Clouds in gamma rays
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Molecular Clouds in gamma rays
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Molecular Clouds in gamma rays

Digel et al. (1996 & 2001)
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CRs In Molecular Clouds

Yang et al.: Giant Molecular Clouds as observed with LAT
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Fig. 5. Energy spectra of CR protons in different clouds derived from the ~-ray data. It is assumed that the interactions
of CR with the ambient gas are fully responsible for the observed ~-ray fluxes. The shaded regions represent 1o fits for
the proton spectra. For comparison, the measurements of CR protons by PAMELA are also shown (black crosses).




CRs In Molecular Clouds

Yang et al.: Giant Molecular Clouds as observed with LAT

Table 2. Spectral characteristics and statistic test (TS) value of the GMC listed in Table 1 obtained from the LAT
data. The individual y?/d.o.f. of the spectral representation tested are also quoted with the corresponding probahilities
in brackets (see text for more details).

Flux at 3 GeV
4 Region TS [107°GeV 'em s § Es [GeV] B /dof (BPL)  y*/dof (KPL)  y*/dof. (TPL)
1 p Oph 11648 T7E08 47£23  Q10.7/9 (0.30) 22.2/11 (0.024) 13.9/11
2 Orion B 6107 3.0+ 0.6 36+1.3 J10.8/9(0.29) 27.9/11 (23x107°) 13.1/11
3
{
J
6
I

(0.24
°) (0.29
Orion A 22021 5.9+ 0.7 43+1.2 1.0/10 (0.35)  40.1/12 (4.9 x 107°)  14.0/12 (0.30
Mon R2 1607 1.3+ 0.2 3.0£0.7 0.5/10 (0.39)  29.4/12 (3.4 x107°)  13.4/12 (0.34
Taurus 5670 08+ 15 47+1.5 0.5/10 4 (0.17
0.
0
(0.

[
(0.39)  36.9/12 (2.3 x 107 16.5/12
R CrA 2315 1.2+ 0.8 0.9+0.8 5.1/9 (0.
0.
(0

(.

82) T.d;ll (0.76) 15.0/11
42) 24.0/11 (0.01) 12.0/11
30) 20.8/12 (0.05) 17.3/12

Chamaeleon 2917 2.0+ 05 2009 §9.2/9 (
Perseus OB2 6410 3.8£0.3 494+21 QL7/10

)
)
)
)
)
)
)
)

2
2
3
3
1
1
3
1

8
6
1




LMC diffuse gamma rays

30 Doradus Large

Magellanic Cloud (LMC)



LMC diffuse gamma rays

LMC CcOou ntS mapS 800MeV-8GeV and 8-80GeV (smoothing with gaussian of 0.2°)
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PKS0601-70 » A bright region, 30 Dor : what lies behind ?

+ Extended emission not filling the galaxy or following the gas
* A few hard sources



LMC diffuse gamma rays

LMC: cosmic-ray population

An inhomogeneous distribution 1Y v
* CR sea has 1/3 the local CR density ” Average eI'I'IISSIVIty SpECtrum
* CR enhancements b'}'r factors 2-8 10 = At A PRI A e el L _
* No CR enhancement in 30 Dor... |
* ... but >0.5° offset from it -
* Correlation with cavities and shells E
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SMC diffuse gamma rays

Spitzer

Small
Magellanic Cloud (SMC)

wing



SMC diffuse gamma rays

SMC: counts MApPS 800MeV-8GeV and 8-80GeV (smoothing with gaussian of 0.2°)
PKS 0026-710 47 Tuc globular cluster
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* Extended emission following the bar of the SMC
* No hard sources within SMC boundaries

Counts



SMC diffuse gamma rays

SMC: cosmic-ray population

Global picture differs from LMC

* No point-like source in SMC

* CR sea has ~5% the local CR density

* CR enhancement in the bar by ~4

* No obvious correlation with cavities
...or star forming regions 72°00'§
(but geometry is different)
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CR In other galaxies
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