Accretion in binary systems

Compact star M , normal star M with $M_2 < M_1$

Normal star expanded or binary separation decreased => normal star feeds

compact star

Roche lobe and Lagrangian points

Test particle in binary system: equipotential surface

5 equilibrium points: Lagrangian points If a star fills its Roche lobe \Rightarrow mass transfer \Rightarrow accretion

Roche lobes

More massive star

Less massive star

Formation of an accretion disc

Accretion disk formation

Matter circulates around the compact object:

Accretion disk

- Material transferred has high angular momentum so must lose it before accreting => disk forms
- Gas loses angular momentum through collisions, shocks, viscosity and magnetic fields: kinetic energy converted into heat and radiated.
- Matter sinks deeper into gravity of compact object

Gravitational (potential) energy

surface gravity: $g = \frac{GM}{r^2}$ grav. force:F = mgwork:dE = Fdr

total work / potential energy:

$$E = m \int_{R}^{\infty} g dr = m \int_{R}^{\infty} \frac{GM}{r^{2}} dr$$
$$E = m \left[\frac{GM}{r} \right]_{R}^{\infty}$$

Accretion: gravitational power plant

radiation: hv

Accretion Disk Luminosity

For most accretion disks, total mass of gas in the disk is << M so we may neglect self-gravity

Hence the disk material is in circular **Keplerian orbits** with angular velocity

$\Omega = (GM/R^3)/2 = v/R$

Energy of **particle** with mass *m* in the Kepler orbit of radius *R* just grazing the compact object is

$$\frac{1}{2}mv^2 = \frac{1}{2}m\frac{GM}{R} = \frac{1}{2}E_{acc}$$

Gas particles start at large distances with negligible energy, thus

$$L_{disk} = \frac{GMM}{2R} = \frac{1}{2}L_{acc}$$

Disk structure

The other half of the accretion luminosity is released very close to the star.

Examples: White dwarf

M= 0.6 M_N

R= 10 000 km

E=GMm/R

m = 1 g ⇒

 $E \approx 8 \times 10^{16} \text{ erg}$

Example: Neutron star

M= 1.4 M_R

R= 10 km

E=GMm/R

 $m = 1 g \Rightarrow$

 $E \approx 2 \times 10^{20} \text{ erg}$

Example: Stellar black hole

 $M=6 M_{\mathbb{R}}$ $R \approx 2GM/c^2 \approx 18 \text{ km}$

E=GMm/R ≈ 0.5 mc² m = 1 g ⇒ E ≈ 4 x 10^{20 erg} m = 1 M_{⊠ ⇒}

 $E \approx 8 \times 10^{53} \text{ erg}$

⇒ If energy released in seconds/minutes: GRB luminosity (collapsar model)

Example: Active galactic nucleus (AGN)

 $M = 10^{8} M_{\odot}$ $R = 2GM/c^{2}$

 $E=GMm/R \approx 0.5 mc^2$

 $m = 1 g \Rightarrow$

 $E \approx 4 \times 10^{20} \text{ erg}$

⇒ Are stellar BH as bright as AGN?!

The Eddington luminosity

Accretion rate: \dot{M} (measured in [g/s] or [$M_{M/vr}$])

Accretion luminosity: $L_{acc} = \frac{GM\dot{M}}{R}$ [erg/s]

Maximum accretion rate onto a neutron star:

$$L_{E,NS} \approx 1.8 \times 10^{38} \text{ erg/s} \Rightarrow \dot{M}_{E,NS} = \frac{L_{E,NS}R}{GM} \approx 1.5 \times 10^{-8} \text{ M}_{0/\text{yr}}$$

Maximum accretion onto a supermassive (10⁸) black hole:

$$L_{E,AGN} \approx 10^{46} \text{ erg/s} \Rightarrow \dot{M}_{E,AGN} \approx 0.5 \text{ M}_{o/y}$$

Characteristic temperatures

Define temperature T such that hv ~ kT
 Define 'effective' BB temp T

$$T_{b} = (L_{acc} / 4\pi R^{2}\sigma)^{1/4}$$
Thermal temperature, T such that:

$$G\frac{M(m_p + m_e)}{R} = 2 \times \frac{3}{2}kT_{th} \implies T_{th} = \frac{GMm_p}{3kR}$$

Optically-thick flow:

 $T_{rad} \sim T_b$

Optically-thin flow:

 $T_{rad} \sim T_{th}$

Computing accretion temperatures

In general,

$$T_b \leq T_{rad} \leq T_{th}$$

For a neutron star:

$$T_{th} = \frac{GMm_p}{3kR} \approx 7.5 \times 10^{11} K$$
$$T_b = \left(L_{acc} / 4\pi R^2 \sigma \right)^{1/4} \approx 2 \times 10^7 K$$

assuming: $L_{acc} \approx L_{Edd} = 1.3 \times 10^{38} \left(\frac{M}{M_{Sun}} \right) \text{erg/s}$

Accreting NS and WD spectrum

Thus expect photon energies in range:

$$1 \text{ keV} \le hv \le 100 \text{ MeV}$$

Similarly for a stellar mass black hole

33

8

For white dwarf, $| \sim 10 \text{ erg/s}, M \sim M_{\text{B} R = 5x10 \text{ cm}}, 1 \varepsilon \zeta \leq hv \leq 100 \text{ keV}$

=> optical, UV, X-ray sources

Accreting White Dwarfs in binary systems are called Cataclismic Variables (CVs)