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Radius ~ 10 km
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How compact
are compact
objects?

Escape velocity:
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Degeneracy Pressure

« Two particles cannot occupy the same space with the same
momentum (energy).

 Forvery dense solids, electrons cannot be in their ground

states, they become very energetic = approaching the speed
of light.

 Pressure holding up star no longer depends on temperature:
P oc p?
y=35/3 for non-relativistic degenerate gas
y=4/3 for relativistic degenerate gas



"Normal' paking lot with e
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The Chandrasekhar’s limit:

N fermions in star of radius R = n ~ N/R?

Volume per fermion ~ 1/n (Pauli exclusion principle) and
momentum ~ /in'? (Heisenberg principle)

Fermi energy of fermionic gas in relativistic regime:
E. = pyc~hn'3c ~ hcN"3/R
Gravitational energy per fermion:

E.~-GMmyR (M=Nmyg, most of the mass in baryons)

Equilibrium at a minimum of the total energy function:

E=E.+ E; =hcN'"3/R— GNmg*/R




E(N) =E .+ E;=hcN"’/R — GNmz/R

For arbitrary large V, E is always negative = if R decreases, E

continues to decrease = collapse continues indefinitely = M, .

For small &V, first term dominates (£ > ()) = minimum at £(N)=0
Nyor ~ (he/Gmg?)3? ~2x 107 = M, _~N, mz~1.7 Mg

From this simplified calculation, same M, . for WDs and NSs.

Equilibrium radius: E .~ mc? in the relativistic regime and m is the
mass of electrons or neutrons, giving WD and NS radius, respectively

E.~heNY3/R ~me? R~ h/me(N, )"~ h/me (hc/Gmg?) !

max
/

NS radii m,/m , times smaller than WD radii




Stable WDs and NSs

HW (1958) and OV (2939) equations of state, ignoring nuclear forces.
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=larger pressure to contrast gravity (P oc p?)




White Dwarfs

« The more mass the star has, the smaller the star

becomes!

e increased gravity makes the star denser
. greater density increases degeneracy pressure to balance

gravity

2.0
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as mass increases
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White dwarfs: mass-radius relation

Stein 2051

Chandrasekhar’s model (dashed line) agrees quite well with
better models based on equations of state (with a

dominating element, different fermions, particle interactions
and electrostatic corrections).

Maximum mass varies in the range 1-1.45 Mg




Neutron star: mass-radius relation

To determine NS
Equation of State

(EoS) we need to
know the behavior
of matter at
supranuclear
density and use
General Relativity
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A NEUTRON STAR: SURFACE and INTERIOR
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GR: Mercury orbit precession

® Mercury

Newtonian Gravity Predicts: 5557.62 arcsec/century
Observed Value: 5600.73 arcsec/century

Difference: 43.11 + 0.45 arcsec/century too fast!!



GR: The Equivalence Principle

The force of gravity is indistinguishable from the force
due to accelerated motion.

acceleration = const.

“| feel a downward force”




GR: Deflection of Starlight

lrue position
of Star A—___

apparent

position

of Star A~
~

lrue and —_—

apparent [,
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of Star B— ‘ Earth

How can we measure this effect?



GR: Deflection of Starlight

Observation by Eddington during Solar eclipse in 1919
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GR: Gravitational Lensing

image of real image of
galaxy galaxy galaxy

Distant galaxies lensed/warped in
appearance by close galaxy

The same galaxy appears at .
three pos?tionsyingﬁe sky. Masses (mamly Dark Matter)

Copyright © Addison Wasley.



GR: Light travels along “straight”
lines in a curved “space-time”

If this were a soccer
field, how would a
soccer ball “roll” on it?

Light behaves similarly
traveling through
curved 3D space




Black Holes




A nonrotating black hole has only a

“center” and a “surface”

The event horizon is the
sphere from which light
cannot escape Event

" horizon
The distance between the BH
and its event horizon is the

Schwarzschild radius:
M
R =ZM _ 3 2
C

Sun

The center of the BH is a point
of infinite density and zero
volume, called a singularity

Every object in the universe has a Schwarzschild radius, but they
become a BH only if their mass is contained within Rc.
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GR: Gravitational Redshift

Light loses energy as it travels away from a source of gravity

\\
{ ~
74

Equivalent viewpoint: time runs more slowly the
closer you are to a source of gravity!



Gravitational redshift

S RAVITATIONAL RED SHIFT
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Falling into a black hole

With a sufficiently large black hole, a freely falling
observer would pass right through the event
horizon in a finite time, would not feel the event
horizon.

A distant observer watching the freely falling
observer would never see him/her fall through the
event horizon (takes an infinite time).

Signals sent from the freely falling observer would
be time dilated and redshifted.



Falling into a black hole

Probe far from

Probe close to black hole
black hole

Event
horizon

Fsllipg iTt?c slrlnaller BH, :&J A o e

the freely Tallin &) % e
observe rywouldgbe 19 ;}*\'{ b“,’j ]
ripped apart by tidal " f\,
effects. ' ‘ &



Falling into a black hole

Once inside the event horizon, no communication
with the universe outside the event horizon is
possible.

But incoming signals from external world can enter.

A black hole of mass M has exactly the same
gravitational field as an ordinary mass M at large
distances.



No-hair theorem

Three parameters completely describe the structure of a BH

Mass (M)

As measured by the black hole’s effect on orbiting bodies,
such as another star

Total electric charge (Q)

As measured by the strength of the electric force (Q = 0)

Spin = angular momentum (a..)

How fast the black hole is spinning (a.< 1)



