

How compact are compact objects?

Escape velocity:

$$\frac{\mathsf{v}^2}{R} = \frac{GM}{R^2} \Rightarrow \mathsf{v}_e = \sqrt{\frac{GM}{R}}$$

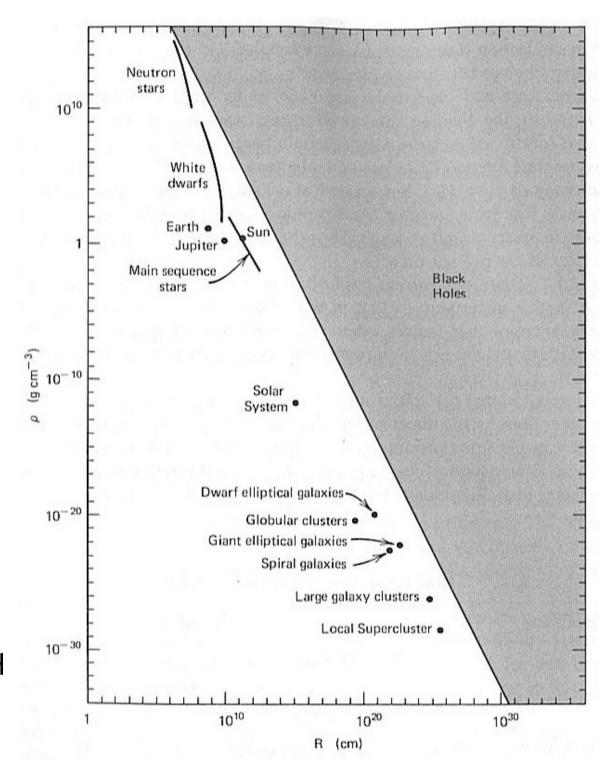
Black Hole when $v_e \approx c$

Strong gravity when

$$E_G \approx mc^2$$

$$\Rightarrow \frac{GM}{Rc^2} \approx 1$$

Compactness = 1 for BH Sun? WD? NS?

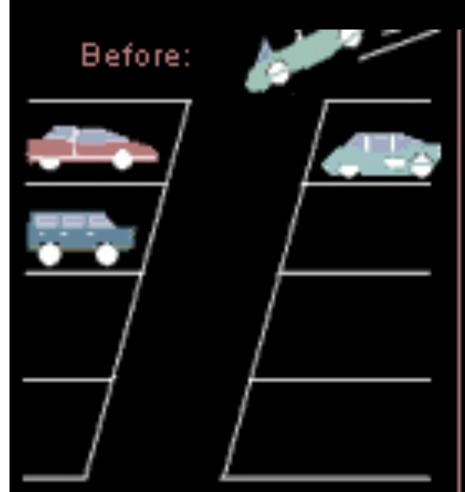


Degeneracy Pressure

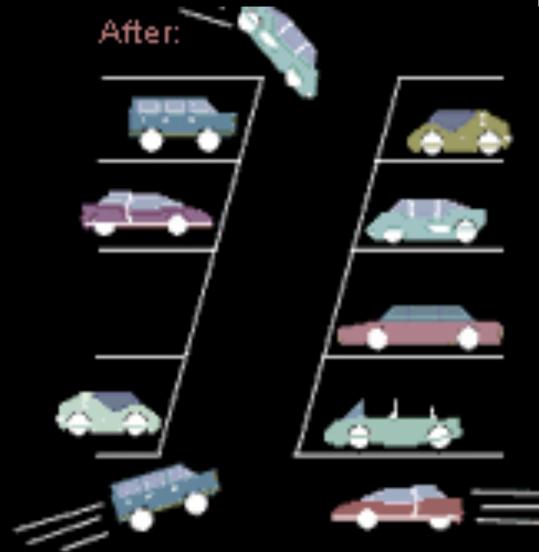
- Two particles cannot occupy the same space with the same momentum (energy).
- For very dense solids, electrons cannot be in their ground states, they become very energetic ⇒ approaching the speed of light.
- **Pressur**e holding up star no longer depends on **temperature**:

$$P \propto \rho^{\gamma}$$

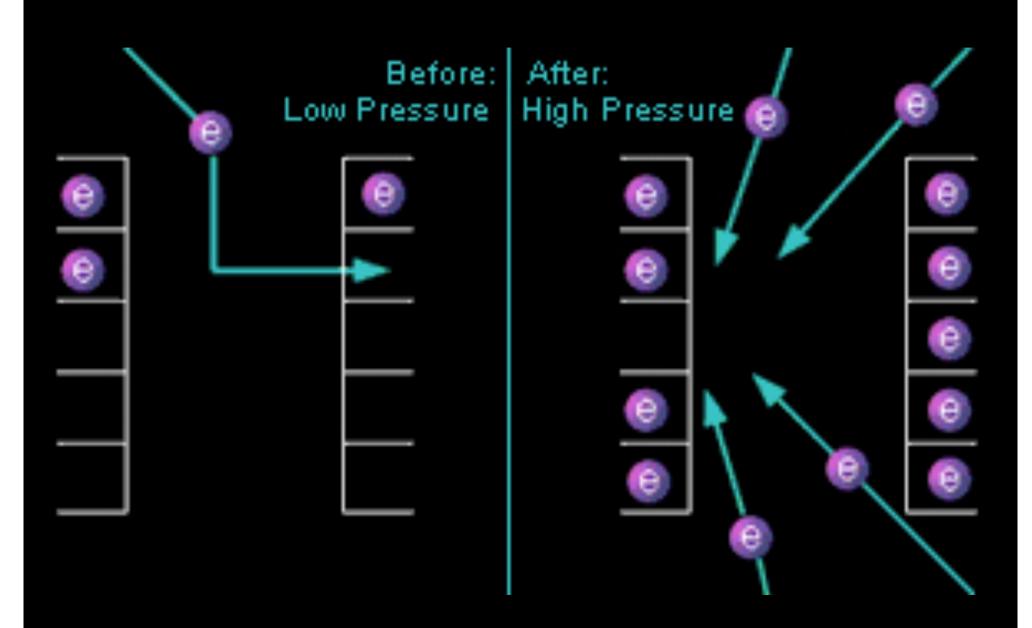
 γ =5/3 for **non-relativistic** degenerate gas γ =4/3 for **relativistic** degenerate gas



"Normal" parking lot with plenty of spaces. Car is in no hurry.



"Degenerate" parking lot with few spaces. Cars race for the spot.



The Chandrasekhar's limit:

General argument by Landau (1932) on limiting mass for a degenerate gas of electrons (WDs) or neutrons (NSs)

N fermions in star of radius $R \Rightarrow n \sim N/R^3$

Volume per fermion $\sim 1/n$ (Pauli exclusion principle) and momentum $\sim \hbar n^{1/3}$ (Heisenberg principle)

Fermi energy of fermionic gas in relativistic regime:

$$E_F = p_F c \sim \hbar n^{1/3} c \sim \hbar c N^{1/3} / R$$

Gravitational energy per fermion:

$$E_G \sim -GMm_B/R$$
 ($M=Nm_B$, most of the mass in baryons)

Equilibrium at a minimum of the total energy function:

$$E = E_F + E_G = \hbar c N^{1/3} / R - G N m_B^2 / R$$

$$E(N) = E_F + E_G = \hbar c N^{1/3} / R - G N m_B^2 / R$$

For arbitrary large N, E is always negative \Rightarrow if R decreases, E continues to decrease \Rightarrow collapse continues indefinitely \Rightarrow M_{max}

For small N, first term dominates $(E > 0) \Rightarrow \text{minimum at } E(N) = 0$

$$N_{max} \sim (\hbar c/Gm_B^2)^{3/2} \sim 2 \times 10^{57} \implies M_{max} \sim N_{max} m_B \sim 1.7 \text{ M}_{\odot}$$

From this simplified calculation, same $M_{\it max}$ for WDs and NSs.

Equilibrium radius: $E_F \sim mc^2$ in the relativistic regime and m is the mass of electrons or neutrons, giving WD and NS radius, respectively

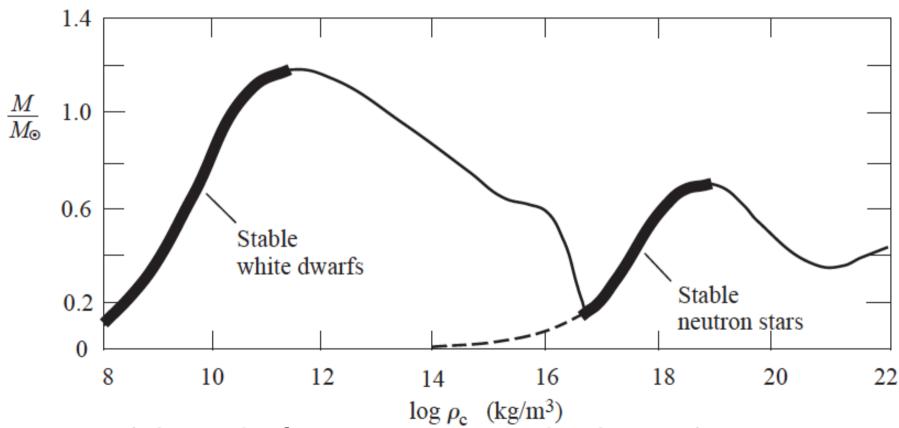
$$E_F \sim \hbar c N^{1/3}/R \sim mc^2 \ R \sim \hbar/mc (N_{max})^{1/3} \sim \hbar/mc \ (\hbar c/Gm_B^2)^{1/2}$$

 $R_{WD} \sim 5 \ \text{x} \ 10^8 \ \text{cm for } m = m_e \ ; R_{NS} \sim 3 \ \text{x} \ 10^5 \ \text{cm for } m = m_n$

NS radii m_n/m_e times smaller than WD radii

Stable WDs and NSs

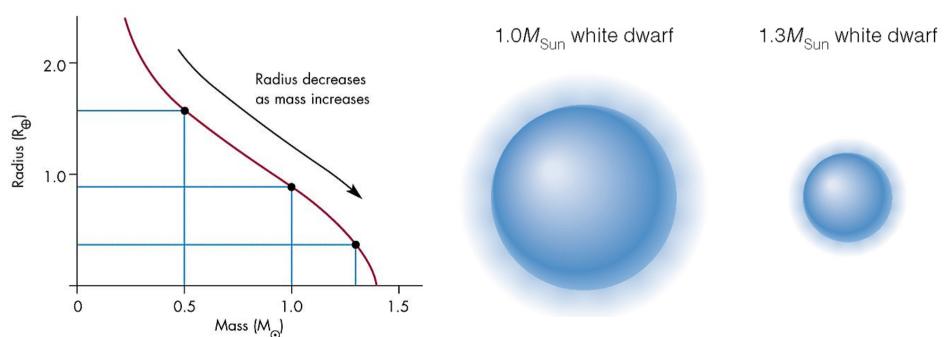
HW (1958) and OV (1939) equations of state, ignoring nuclear forces.



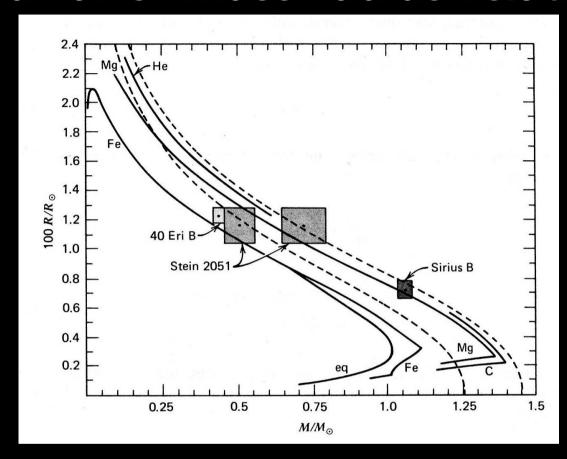
Stability only if mass increase implies larger density \Rightarrow larger pressure to contrast gravity ($P \propto \rho^{\gamma}$)

White Dwarfs

- The more mass the star has, the smaller the star becomes!
 - increased gravity makes the star denser
 - greater density increases degeneracy pressure to balance gravity



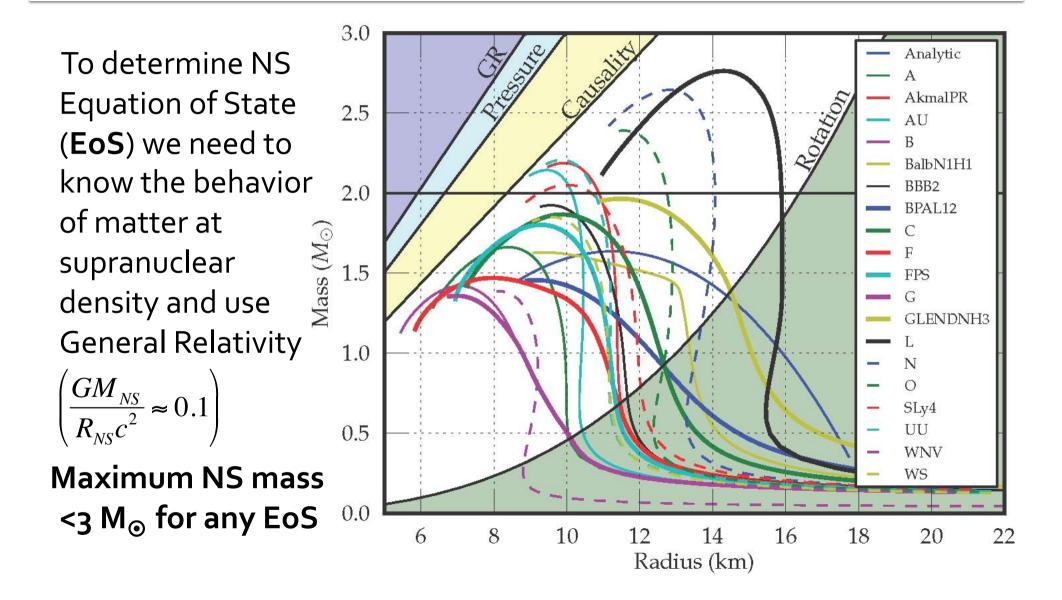
White dwarfs: mass-radius relation



Chandrasekhar's model (dashed line) agrees quite well with better models based on equations of state (with a dominating element, different fermions, particle interactions and electrostatic corrections).

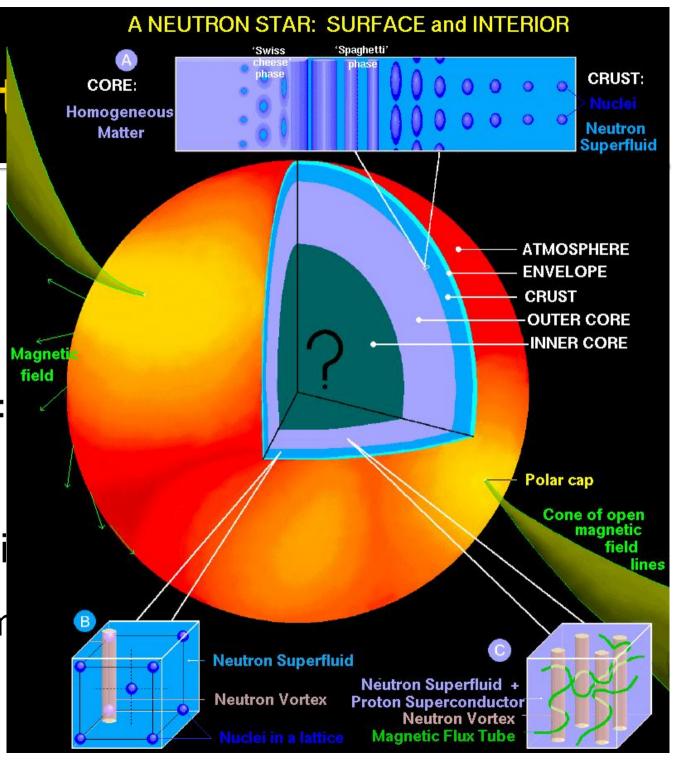
Maximum mass varies in the range 1-1.45 M_☉

Neutron star: mass-radius relation

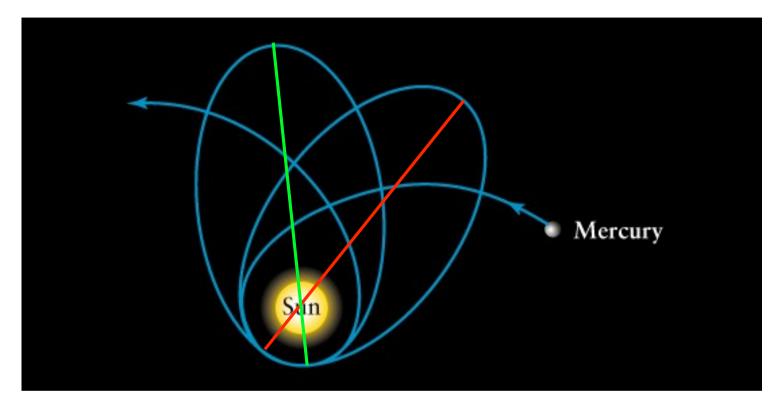


Neutron st

- Atmosphere:
- Crust: Fe
- Neutron drip:
- Superfluidity
- Nuclear densi
- Core: quark m



GR: Mercury orbit precession



Newtonian Gravity Predicts: 5557.62 arcsec/century

Observed Value: 5600.73 arcsec/century

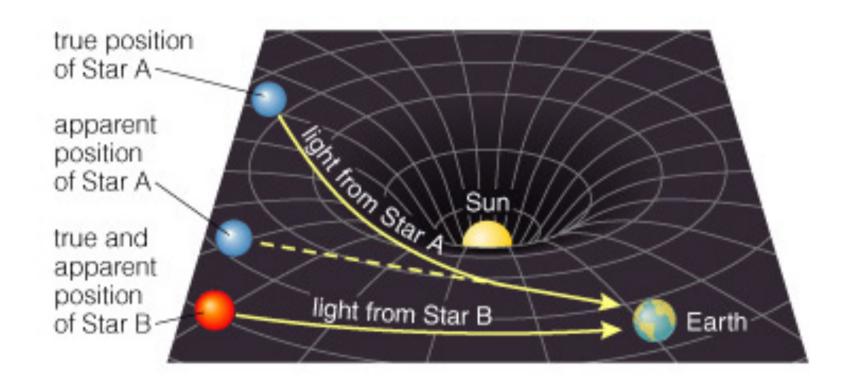
Difference: 43.11 ± 0.45 arcsec/century too fast!!

GR: The Equivalence Principle

The force of gravity is indistinguishable from the force due to accelerated motion.

acceleration = const. "I feel a downward force" "So do I" Earth

GR: Deflection of Starlight

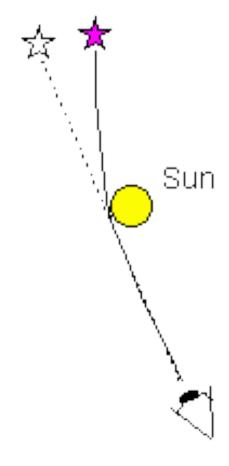


How can we measure this effect?

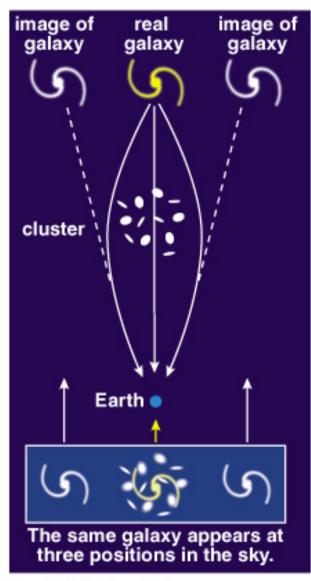
GR: Deflection of Starlight

Observation by Eddington during Solar eclipse in 1919





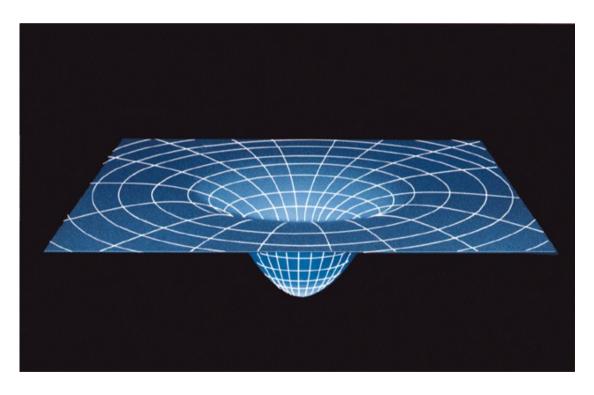
GR: Gravitational Lensing



Distant galaxies lensed/warped in appearance by close galaxy masses (mainly Dark Matter)

Copyright @ Addison Wesley.

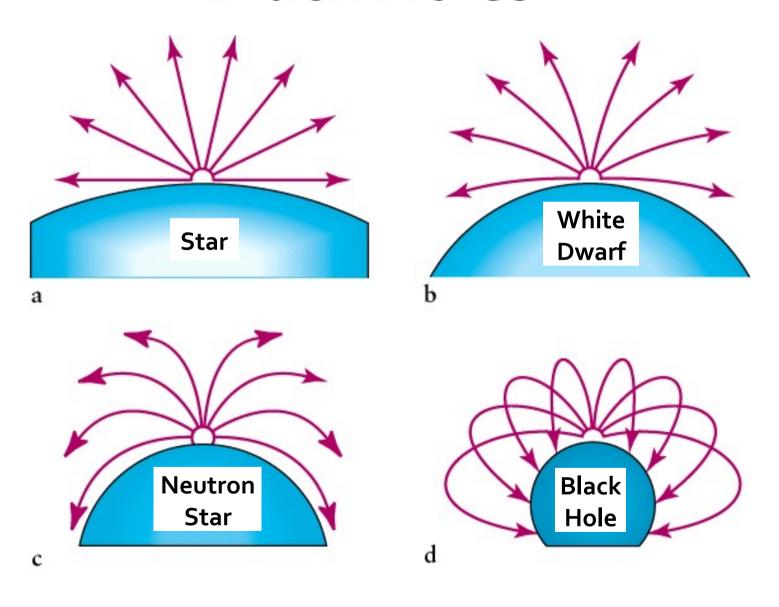
GR: Light travels along "straight" lines in a curved "space-time"



If this were a soccer field, how would a soccer ball "roll" on it?

Light behaves similarly traveling through curved 3D space

Black Holes

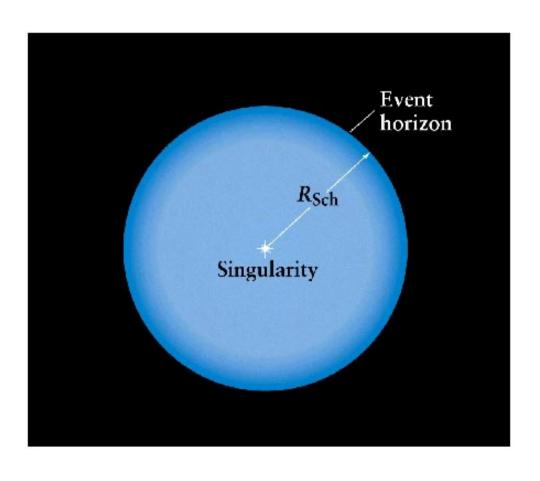


A nonrotating black hole has only a "center" and a "surface"

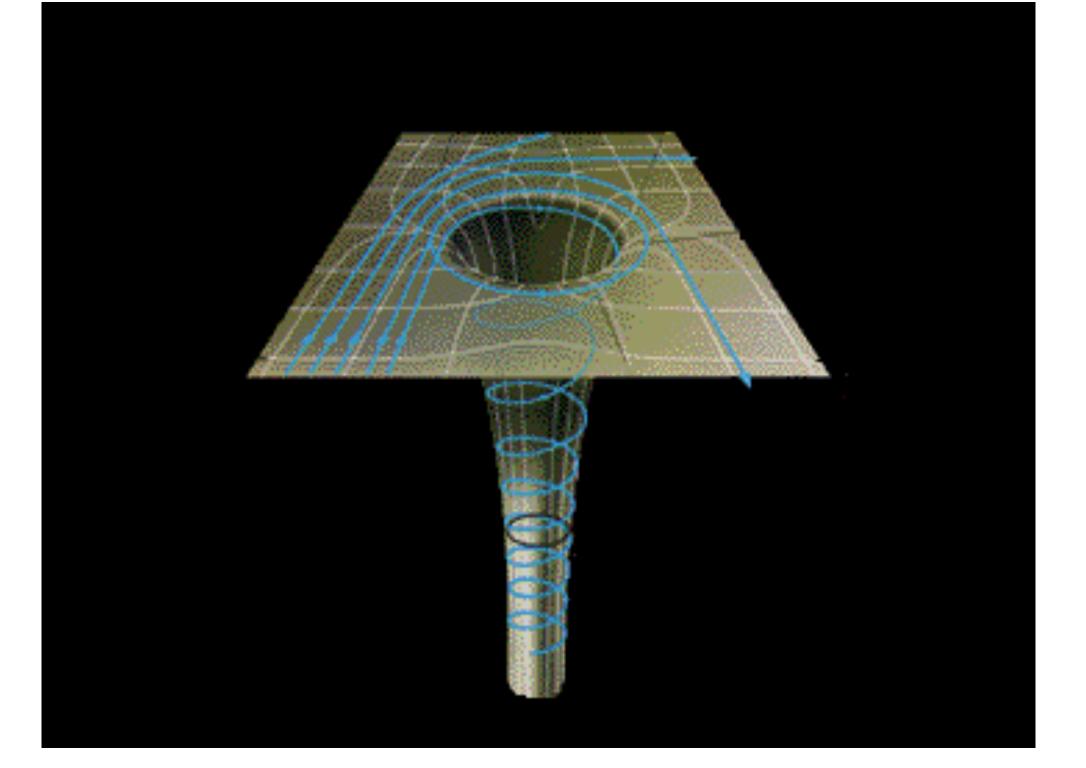
- The event horizon is the sphere from which light cannot escape
- The distance between the BH and its event horizon is the Schwarzschild radius:

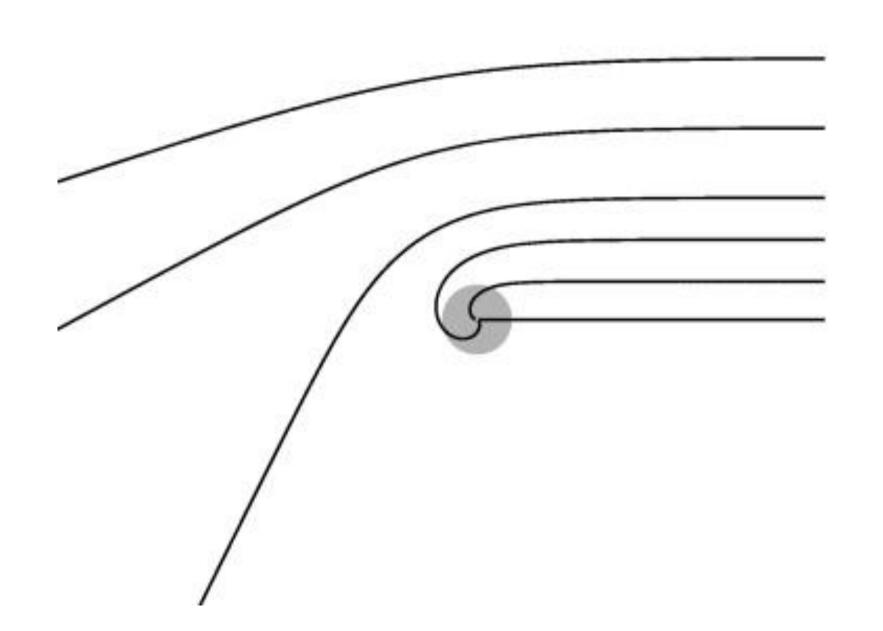
$$R_S = \frac{2GM}{c^2} \approx 3\frac{M}{M_{Sun}} km$$

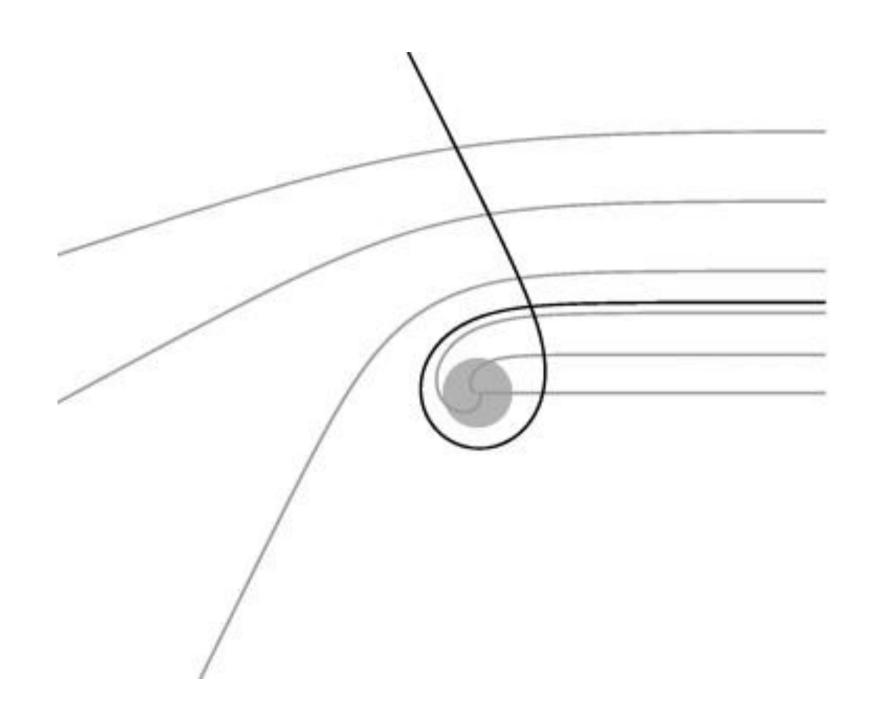
 The center of the BH is a point of infinite density and zero volume, called a *singularity*

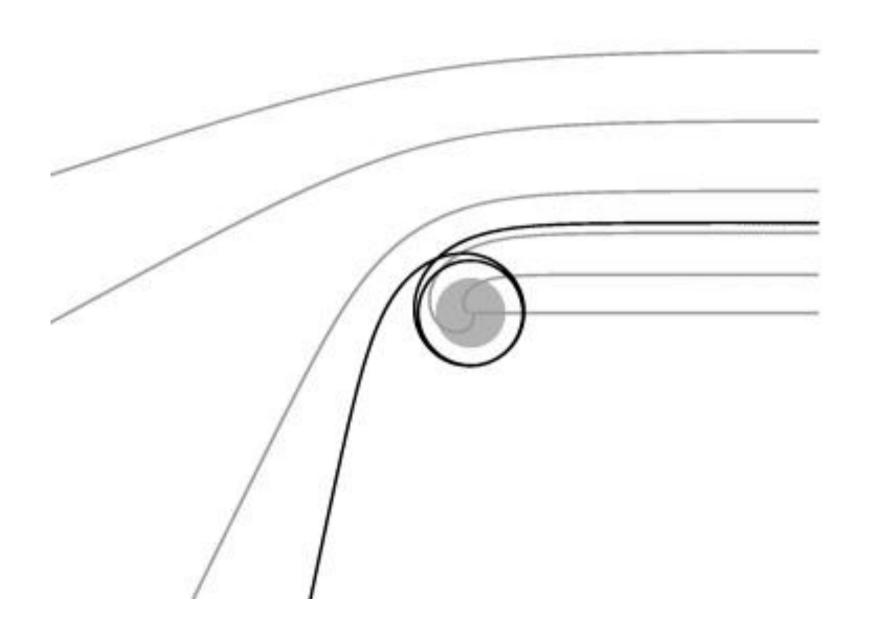


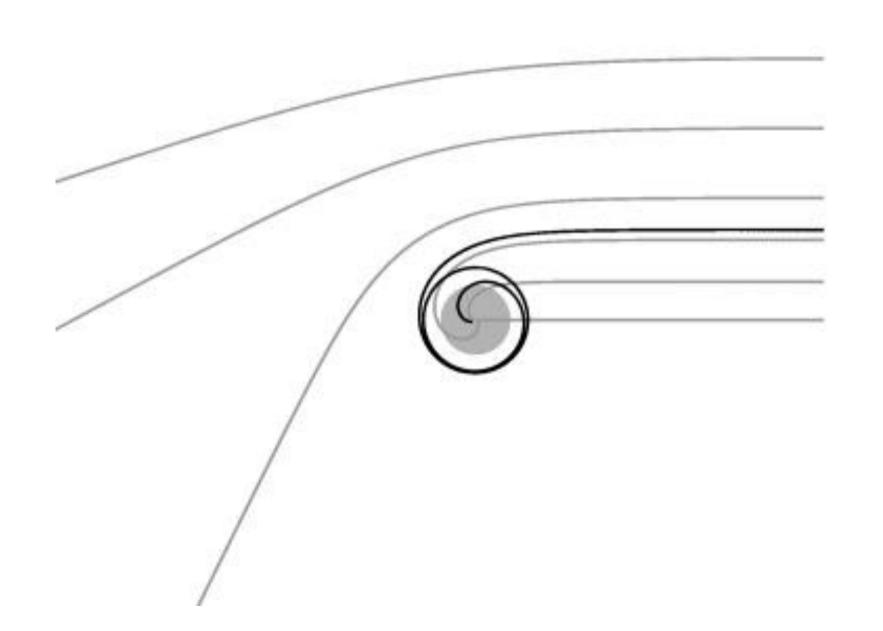
• Every object in the universe has a Schwarzschild radius, but they become a BH only if their mass is contained within R_s .

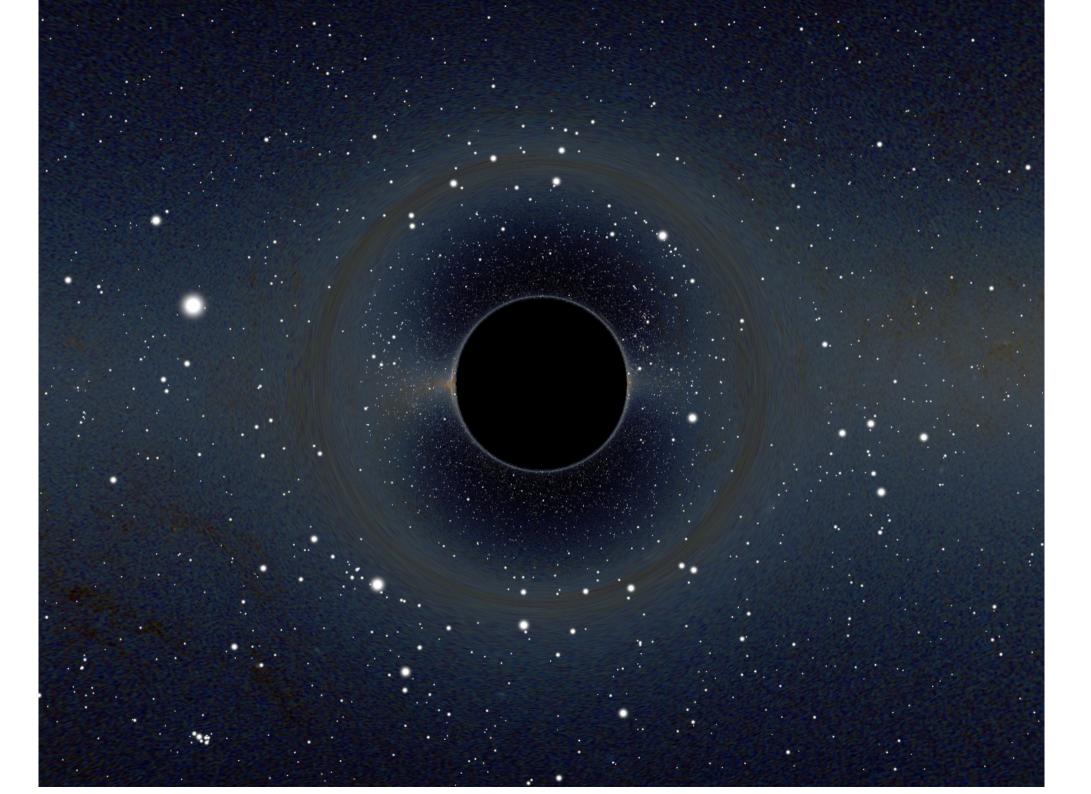


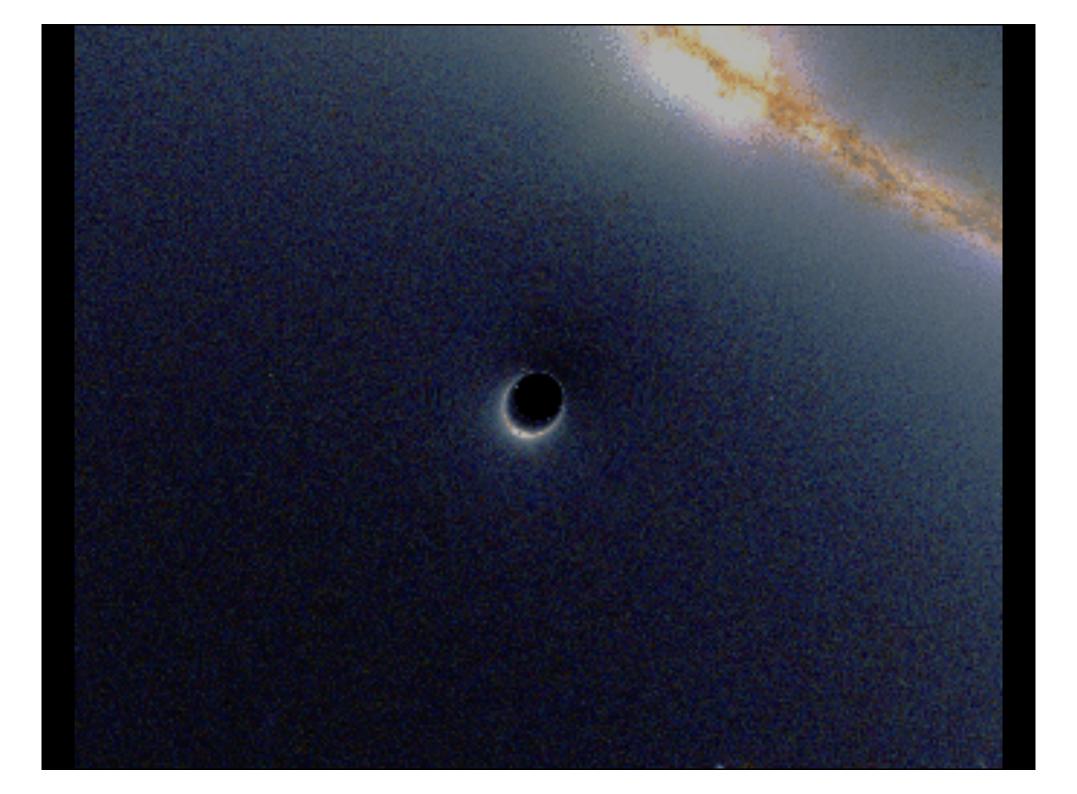






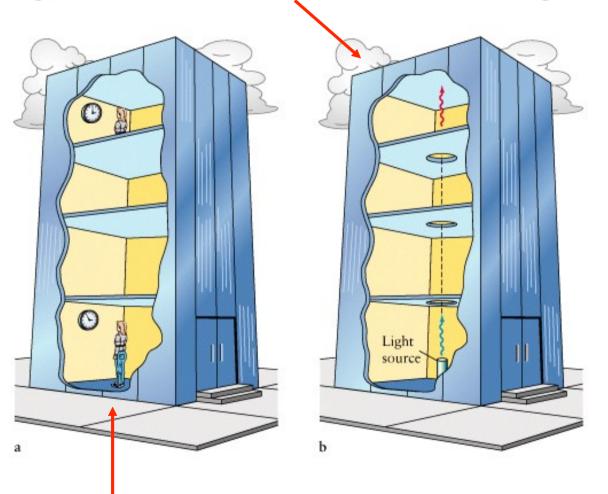






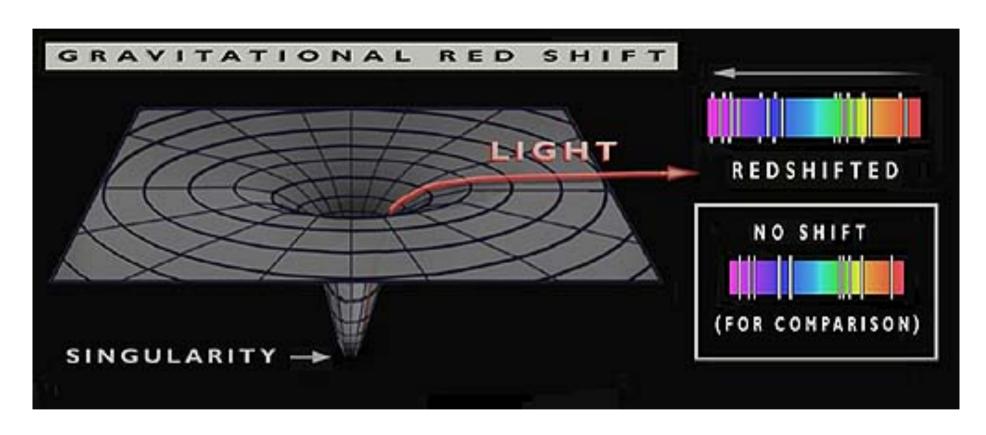
GR: Gravitational Redshift

Light loses energy as it travels away from a source of gravity



Equivalent viewpoint: time runs more slowly the closer you are to a source of gravity!

Gravitational redshift

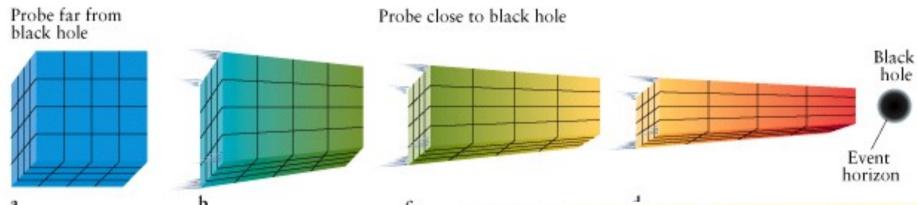


$$\frac{\nu}{\nu_{\rm r}} = \left(1 - \frac{2GM}{c^2 r}\right)^{1/2} \Rightarrow \nu \to 0 \text{ for } r \to R_S$$

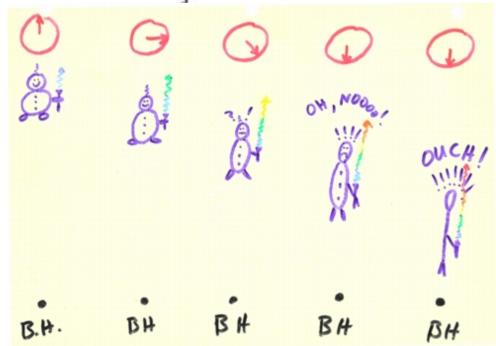
Falling into a black hole

- With a sufficiently large black hole, a freely falling observer would pass right through the event horizon in a finite time, would not feel the event horizon.
- A distant observer watching the freely falling observer would never see him/her fall through the event horizon (takes an infinite time).
- Signals sent from the freely falling observer would be time dilated and redshifted.

Falling into a black hole



Falling into smaller BH, the freely falling observer would be ripped apart by tidal effects.



Falling into a black hole

- Once inside the event horizon, no communication with the universe outside the event horizon is possible.
- But incoming signals from external world can enter.
- A black hole of mass M has exactly the same gravitational field as an ordinary mass M at large distances.

No-hair theorem

Three parameters completely describe the structure of a BH

- Mass (*M*)
 - As measured by the black hole's effect on orbiting bodies, such as another star
- Total electric charge (Q)
 - As measured by the strength of the electric force (Q = 0)
- Spin = angular momentum (a_*)
 - How fast the black hole is spinning $(a_* < 1)$