Star formation
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Cloud contraction

(a) Perturbation of small size (b) Perturbation of large size
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a. Dark cloud b. Gravitational collapse c. Protostar
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Bipolar outflows
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Jets from Young Stars HST - WFPC2

PRC95-24a - ST Scl OPO - June 6, 1995
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Dust and light
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Nuclear reactions



Gamow Window
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pp Chain

Most of the nuclear energy from stars is produced by the fusion of four
hydrogen atoms into a helium nucleus: the pp chain

H+H-=D+e+v,

2y L | 3

D+ H — He +y

He + jHe — jHe + H + H

Capyright@ 1997 Canternperary Physics Education Praject.

6'H" — “He ™ + 2'H™ + 2e™ 4+ 2v + 2~



pp Chain

The energy released by the pp chain is simply the mass decrement
between the initial and final nuclei

6'H — “He™™ + 2'H" + 2e* + 2v + 2+

Mass difference between

Energy released initial and final nuclei
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CNO Chain

The CNO cycle commences once the stellar core temperature reaches
1.4 x 107 K and is the primary source of energy in stars of mass M > 1.5 M,
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Nuclear reatcions

Many nuclear reactions can occur in stars, with relative efficiencies
depending on temperature, density and abundances of chemical elements

= different reactions are dominant in different stages of stellar evolution

Nuclear Fuel Process Threshold Temperature Products
H p-p chain ~4x10°K He
H CNO cycle 15 x 10° K He
He 3¢ 100 x 10° K C,O
C C+C 600 x 10° K O, Ne, Na, Mg
@) 0+0 1000 x 10° K Mg, S, P, Si
Si Disintegration 3000 x 10° K Co, Fe, Ni




Nuclear reactions

The energy generation rate € (energy/mass) is proportional to the
number of interactions per second and strongly depends on

temperature:
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Neutron capture and beta decay

* Interaction between nuclei and free neutrons (neutron capture)

» Neutrons capture by heavy nuclei is not limited by the Coulomb barrier,
so could proceed at relatively low temperatures.

» If enough neutrons available, chain of reactions:
(A, Z) +n— | (A+1,Z)

l.(A+1, Z) + n — |_(A+2, Z)
I,(A+2, Z)+n — IE(A+3, Z) ...etc

» If a radioactive isotope is formed it will undergo B-decay, creating a new
element:

IN(A+N, Z) — J(A+N, Z+1) + e+

* If new element is stable, it will resume neutron capture, otherwise may
undergo series of B-decays

J(A+N, Z+1) — K(A+N, Z+2)+ e +¥y_
K(A+N, Z+2) — L(A+N,Z+3)+ e +V,



sS=process and r-process

Stable nuclei may undergo only neutron captures, unstable ones may undergo
both, with the outcome depending on the timescales for the two processes.

Timescales: neutron capture reactions may proceed more slowly or more
rapidly (if many neutrons are available) than the competing B-decays:
S-process or r-process.
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Absorption



Optically thin cloud: T <<1

e Chances are small that a photon will interact with particle

e Can effectively see right through a cloud

* In the optically thin regime, the amount of extinction

(absorption plus scattering) is linearly related to the amount of
material: double the amount of gas, double the extinction

—> if we can measure the amount of light absorbed (or
emitted) by the gas, we can calculate exactly how much gas
there is



Optically thick cloud: t>>1

e Certain that a photon will interact many times with particles
before it finally escapes from the cloud

e Any photon entering the cloud will have its direction changed
many times by collisions, which means that its "output”
direction has nothing to do with its "input" direction.

- Cloud is opaque

* You can't see through an optically thick medium; you can
only see light emitted by the very outermost layers.

-2 you can’t observe interior of a star, but only the surface
(photosphere)

e The spectrum of the radiation emitted by optically thick
material is a blackbody



Opacity: K =a. /p
e Opacity in a star is a function of composition and temperature.

e Determined by the details of how photons interact with particles
(atoms, ions, free electrons).

e |f the opacity varies slowly with A it determines the star continuous
spectrum (continuum). A rapid variation of opacity with A produces
dark absorption lines in the spectrum.



e Bound-Bound absorption: Small, except at those discrete
wavelengths capable of producing a transition (absorption lines)

e Bound-Free absorption: Photoionisation. Occurs when photon has
sufficient energy to ionize atom. The freed e” can have any energy,

thus this is a source of continuum opacity

* Free-Free absorption: Bremsstrahlung. A free electron absorbs a
photon, causing its speed to increase. It is a source of continuum
opacity and important at high temperatures (it needs free e").

e Electron scattering: Thomson scattering. A photon is scattered,
but not absorbed by a free electron.

e Dust extinction: Only important for very cool stellar atmospheres
and cold interstellar medium
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Structure of the H atom = produces spectral features
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The lower the optical
depth, the deeper into
the star we see

For weak lines (lower
optical depth) the
deeper the line
formation region

For strong lines (higher
ol_pltical depth), the
shallower the line
formation region
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Formation of absorption lines on the Sun



Temperature (K)

Formation of absorption features can also be
understood in terms of the temperature of the
local source function decreasing towards the line

centre
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Stellar spectra
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LocTH
Why the Main Sequence
is not a straight line?
L=t RO T*

defines lines of constant
radius
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