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OUTLINE OF THE LESSON

+ RADIATION FROM AN ACCELERATED CHARGE

(LARMOR FORMULA)

+ RADIATION EMITTED BY A SINGLE ELECTRON

DURING ITS NEAR COLLISION WITH A PROTON
AND RELATIONSHIP BETWEEN ELECTRON SPEED,
IMPACT PARAMETER AND FREQUENCY OF THE
EMITTED RADIATION

- RADIATION EMITTED BY A DISTRIBUTION OF

ELECTRON

+ APPLICATION TO GALAXY CLUSTERS: WHAT

PHYSICAL QUANTITIES CAN WE DERIVE ?



RADIATION FROM AN
ACCELERATED CHARGE:
EURISTIC DERIVATION
(Thomson 1903)
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key r-! dependence of acceleration field: it will allow the
transport of energy, i.e. radiation



LARMOR'S FORMULA

The outflow is energy is calculate through the Poynting vector

242
S =4L EZ, = 4C q2a4 sin® @
T 7T rec
dw  g‘a’ sin? g Multiply for
dtdO  47c the area rad()
o dw 2qg° 32

dt  3c®




LARMOR'S FORMULA

— P
b 1

—

B
/ﬁ

‘Power radiates is proportional
to the square of the charge and
the square of the acceleration
Characteristic dipole pattern
proportional to sin“0: no
radiation emitted in the
direction of acceleration and
the maximum is emitted
perpendicular to the
acceleration

*The radiation is polarized: if
the particle accelerated along a
line, we will have a 100%
polarization



RADIATION FROM AN
ACCELERATED CHARGE:
RIGOROUS DERIVATION

Fully relativistic, exploiting the fact that P = dW/dt is a
relativistic invariant. It starts from Maxwell's equations
using the scalar and vector potentials at retarded times
(Liénard-Wiechart potentials)

If we want the fileds at point r and time t+ we first must
determine the "retarded” position and time of the
particle r.., and t,.;
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Particle at time t

(- B)1-p7)

kr?

J Tret

Velocity field: reduces to electrostatic when =0
It does not transport energy: SxA proportional to r —0



Particle at time t

(- B)1-p7)
kr?

M.
I
o)

Acceleration field: it transports energy because SxA
does not go to zero



tret
In the non-relativistic case k=1-—n- ,é ~1
‘B‘ <<1 n —IE ~ N

fix| fix g

= (_9 [ ﬂ} _qa

rad| = f )
C I 'c

sin@

tret

Which is the expression we already found in the euristic
derivation
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{a)
Figure 4.11a Dipole radiation patters for particie at rest.

)
Figure 4116 Angular distribution of radiation emitted by a particle with
parallel acceleration and velocity.

{e}

(d)
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perpendicular acceleration and velocity,



THE RADIATION SPECTRUM

The spectrum of radiation depends on the time variation of
the electric field

There's no meaning in a spectrum at a precise instant of
time, you can know only of a spectrum during a sufficiently
long time At and still you can only define the spectrum to
within a frequency resolution AwAft > 1

You use Fourier analysis and the properties of Fourier
transforms to work out the spectral properties of the
radiation

Fourier transform of E(%)
E(w)=— j E(t)e'*dt  Contains all the

information about the

frequency behavior of E(%)



THE RADIATION SPECTRUM

aw _ IE (t)dt Total energy per unit area in ferms
dA of the Poynting vector

jEz(t)dt =27 Hé(a))‘zda) From Parseval's theorem

From simmetry properties of E(t)

dW _ fle, which is real so negative
d—A =0 -(UE((O)‘ de frequencies can be eliminated

multiplying by 2

Energy per unit area per unit
frequency
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Figure 2.1a  Electric field of & puise of dwration T.

ciE(w)i? 4

-

R

(4]

Figure 210 Power spectrvon for a.
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Figure 22a Electric field of a sinusoidal pulse of frequency wq and duration T,
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Figure 2.2b Power spectran for a.
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Figure 236 Power spectrum for a.



DIPOLE APPROXIMATION

s

Figure 3.4 Rodiation from @ mediem of size L.

Ro

Consider a system with many particles with positions r,
velocities v; in principle retarded times will differ for each
particle.

It is possible to ignore this difficulty in some situations: t is
the typical time scale for changes, then if t >>L/c then the
differences are negligible



DIPOLE APPROXIMATION

The condition © >> L/c translates into, if v=1/1, c/v>>L
which means A >> L size of the system small compared to
wavelength.

Another way is to consider as | the characteristic scale of
the particle's orbit, then t = 1/vand so v/c <« |/L equivalent
to the non relativistic condition v <«< ¢

d = Z ot d Dipole moment of the distribution of charges
i

i 202
i — d sin‘ @ P =3
dQQ 4nc 3C



DIPOLE APPROXIMATION

Spectrum of radiation in the dipole approximation
d(t) = Je_i“’ta(a))da) Fourier transform of d(t)

d(t) = —Ta)zoi (0)e “do E(w)= _C_ir w*d(w)sin @

Interesting property of
dwW 872'0) dipole radiation that the
do 3¢

emitted spectrum is related
directly to the frequencies of
oscillation of the dipole
moment



BREMSSTRAHLUNG

Cloud of
ionized plasma

Photons
Emitted
photons % 2 % frr'
Electron = -NJ_:LN\* 57\ /\/\H
v

track

@® Ze
Ion

Thickness

along line of -q
sight (m) Observer

Radiation due to the acceleration of a charge in the Coloumb
field of another charge (also free-free emission)

Classical treatment then quantum correction (Gaunt factor)
to the classical formula

Collisions of like-particles in the dipole approximation is
zero because dipole proportional to the constant center of
mass



BREMSSTRAHLUNG IN A NUTSHELL

*Electron of mass m, with impact parameter b and velocity
v in the Coloumb field of the proton

*The acceleration of the electron is az(q?/ m,b?) and lasts
for a time b/v

*This encounter will result in a emission of energy
W=(q2a?/c3)(b/v)*(q®/c3m 2b3v)= (qn./c3m, ?v) as ban1/3
*The total energy radiated per unit volume will be n,W

*Because each collision lasts for a time (b/v) there will be
little radiation at frequencies greater than (v/b). For
frequencies lower than (v/b) we may take the energy
emitted per unit frequency as nearly constant

*In the case of plasma in thermal equilibrium v&(k,T/m, )12



BREMSSTRAHLUNG IN A NUTSHELL

1/2
Jo, = W[ M|y ey
“ dodtdv | mic® \k,T) °°

€

‘Bremsstrahlung spectrum is flat up to kT/h and it will fall
rapidly beyond that frequency, simply because and electron
with typical energy kT cannot emit photons with higher
energy

dW - kT 2T 1/2

— szX—OCn
dtdV h

J



EMISSION FROM SINGLE SPEED
ELECTRONS

L 4
k .
|
b ~ R
[
)
[
Ze

Figure 5.1 An electrom of charge ¢ moving past an ion of charge Ze.

Small-angle scattering regime: the electron moves rapidly
enough that the deviation from a straight line is negligible

—_—
—



EMISSION FROM SINGLE SPEED

ELECTRONS
b
T=—  Collision time
Vv
A a? A
d(w) = ~AV ot <<1 d(w) =0 ot >>1
27T

To estimate Av we realize that the change in velocity is
predomiinantly normal to the path

Ze* ¢ b 276’
AV = — 2 24232 dt =
m ° (b”+vt9) mbv




EMISSION FROM SINGLE SPEED

ELECTRONS
dw(b,v) 8Z%° 1
do  32c°m? v?b?

Total spectrum for a medium with ion density n;, electron
density n_, and for a fixed speed v. The flux of electrons
incident on one ion is n,v and the element of area is 2mbdb




EMISSION FROM SINGLE SPEED
ELECTRONS

dw 16e° Jedb 166

=———n,nZ =———n,nZ° In| =
dwdVdt 3c’m®v b 3c’mv o

bmin min

bmex = V/w whereas for b,;, we can have a classical limit
where all the maximum potential energy is converted into
kinetic energy or quantistic when the indetermination

principle takes action. To be general the Gaunt factor is
introduced

6

dw  16ze
dewdVdt  3+/3cm?v

nenizzgff (v, ®)



THERMAL BREMSSTRAHLUNG

We need to average over a distribution of velocities: the
ones astrophysically relevant are power-laws and thermal
(Maxwellian) distribution

2 2
dP oc exp (— rznlzl_l_]d?’v oc exp (— mv j4yzv2dv

2KT
_ho
dW (T, w) e KT |_
n.n.
< dthdC() >OC el ﬁ gff(a))

—



THERMAL BREMSSTRAHLUNG

42 -
T
T " Pure Gaunt factor T
L Exponeatial effect
- _‘u - -
-
2 r T=5x 107K i
E," % F fi=ne= 10 m> i

10 12 14 16 18 20

Log v (Hz)

Fig. 5.5: Theoretical continuum thermal bremsstrahlung spectrum. The volume emissivity (37) is
plotted from radio to x-ray frequencies on a log-log plot with the Gaunt factor (38) included. The
specific intensity /(. T) would have the same form. Note the gradual rise toward low frequencies
due to the Gaunt factor. We assume a hydrogen plasma (Z= 1) of temperatere T=5x10" K with
number densities a; =a_, = 10f m 3.

(a) Linear-linear plot T, (b) Semi-log plot
£y

= =

E v {Hz)

z A

- T (C) Log-log plot
=
=,
g

v(Hz) log v (Hz)

Fig. 5.6: Thermal bremsstrahlung spectra (as pure exponeatials) on linear-linear. semilog, and
log-log plots for two sources with the same ion and electron densities but differing temperatures,
T; = T;. Measurement of the specific intensities at two frequencies {e.g.. at C and D) permits one
1o solve for the temperature T of the plasma as well as for the emission measure {#2)_, A. [From
H. Bradt, Astroromy Methods. Cambridge. 2004, Fig. 11.3, with permission]




Clusters of Galaxies



Why study Clusters

» Clusters are the largest structures in the Universe to
have clearly decoupled from the Hubble flow, they

carry important cosmological information

* Physical conditions in clusters are unlike anywhere
else. They allow us to explore physical phenomena

under unique conditions.



Galaxy Clusters for beginners

Overview

» Basic properties of Galaxy Clusters

- Zero order model for the Intra Cluster Medium

- Global measurements of T and Z

- Spatially Resolved Spectroscopy



Setting the context

Basic properties of the ICM

The ICM is tenuous, typical densities 10-4
to a few 10-2 cm-3 .
These are very low densities,

the tail lobes of the earth magnetosphere
have densities of 10-2 cm-3 .



Setting the context

Basic properties of the ICM

The ICM is hot, temperatures are in the
range of 107 to 108 K (1-10 keV)

highly ionized: H, He completely ionized
heavier elements partially ionized
Chemically enriched, heavy elements such

as O, Si and Fe are present in almost solar
proportions



Setting the context

Basic properties of the ICM

Weakly magnetized typically 0.1 to a few uGauss

Galactic magnetic field 10 pGauss
Solar Wind 50 pGauss
Interstellar molecular cloud 1 mGauss
Earth's field at ground level 1 Gauss
Solar surface field 1-5 Gauss
Massive star (pre supernova) 100 Gauss

Sun spot field 1000 Gauss



Setting the context
Basic properties of the ICM

The X-ray emission from clusters Is
extended.



Setting the context

Coma Cluster
0.5-2.0 keV




X-Ray Imaging

X-rays and optical light show us a different picture




X-Ray Imaging

X-rays and optical light show us a different picture

Galaxy cluster A1367

Optical X-Ray



| Therggal plasma
._faye(-lﬁ ican

,o'

1E 0657 156 THE BULLET CLUSTER .

Galaxy clusters are the most massive (M~10%4-10%°> Mg,\)
objects in the Universe



Properties of groups and clusters

CLUSTERS GROUPS/POOR CLUSTERS
L, (erg/s) 1043 - 10% 10415 - 1043
KTy (keV) 215 <2
N gal 100-1000 5-100
o, (km/s) 500-1200 (median 750) 200 - 500
M, (< 1.5 Mpc) 10 — 5 x 1015 10125 - 2 x 104
Number Density  10°—10% Mpc3 103 - 10-° Mpc?3

Groups and poor clusters provide a natural and continuous extension to lower mass, size,
luminosity and richness of rich, massive and rare clusters

BHACALL 1999



X-Ray Imaging

o - Central regions feature
t,,am E J 10m

poek approx. constant surface
T brightness

EiA

Wi | B * In outer regions the

ey " surface brightness falls

off as a power-law with

Abell 2198
1,=7.B4a—12
R,=0.182

10-

index approx. 3

I [erga/s/cm?/amin? 0.6 ke¥]
L/ - =
T

- Emission is traced out to

oE

E g N

" R [hgl Mpal "7 R st Mpe) 1-2 MPC fr'om the core
Mohr et al. (1999)
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Timescales & other fundamentals

Cooling timescale

The ICM cools by emitting radiation

_u 1 1/2
1:cool ~ ; oL np Tg Except for the
Innermost regions

where n, is high, gas

-1 1/2
~8.5x10yr o IF cools on timescales >
10°cm™ 10°K i
£l Hubble time

1:cool

In first approx. we may consider the ICM as
a stationary ball of hot plasma



Heating

* No major on-going heating of the gas is
necessary (the cooling is very slow)

* The ultimate origin of the bulk of the thermal
energy of the ICM is the gravitational energy

lost by the gas as it falls into the cluster’s
potential well

T ~——

* The temperature of the ICM is related to the
depth of the potential well and to the total
mass of the cluster



The ICM is highly ionized

T, ~107- 108 | H, He completely ionized

- Coulomb interactions are the dominant mechanism for
collisions, for T,= T, the mean free path is:

2 -1
2=a~23kpd | [
2= 10°K | | 10%cm 3

A, =4 <<R

cluster

~ 1|\/|pC

ICM can be treated as a fluid, satisfying hydro-dynamical
equations



Timescale for a sound-wave to
cross the cluster

1/2
V, = (Bj oC Tgll2
Yo,

T —1/2
t. ~6.6x10°yr D 1. 3
Mpc 10°K

t, <<t

t, <<l

cool

The ICM is In hydrostatic equilibrium



Radiation process

Continuum emission is dominated by thermal
bremsstrahlung

g, ocn T -exp(— ﬁj

KT

g

spectral shape — T,

spectrum normal. — n,

Optically thin: n, 6+ L = 10 6.65x10%> 3.18x10%* «( 1



Line emission

The Fe K complex ~ 7 keV is
dominated by emission from
He-like (6.7 keV) and H-like
(6.9 keV), the ratio of lines
Intensity depends upon the
lonization state of the gas
which is a function of the gas

temperature.

Intensity [Arbitrary Units]

0.5

¢.2

0.1

0.05

Fe & Ni Ls

kT=6 keV
Z ZZSolar

Fe

Fe 1
| =

Fe_:

Energy [keV]

10



Summary of basic properties

* A hot, tenuous and weakly magnetized plasma (ICM)
rests in the potential well of galaxy clusters

* The temperature of the ICM is related to the total
mass of the cluster

+ The ICM is enriched and heavily ionized

- It dissipates energy at a very slow rate by emitting X-
rays by thermal bremsstrahlung

» It can be treated as a fluid in hydro-static equilibrium

* The pressure associated with the weak B field does not
drive gas dynamics

For contacts: http://www.iasf-milano.inaf.it/~gasta/personal.html
gasta@lambrate.inaf.it



