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OUTLINE OF THE LESSON 

• RADIATION FROM AN ACCELERATED CHARGE 
(LARMOR FORMULA) 

• RADIATION EMITTED BY A SINGLE ELECTRON 
DURING ITS NEAR COLLISION WITH A PROTON 
AND RELATIONSHIP BETWEEN ELECTRON SPEED, 
IMPACT PARAMETER AND FREQUENCY OF THE 
EMITTED RADIATION  

• RADIATION EMITTED BY A DISTRIBUTION OF 
ELECTRON  

• APPLICATION TO GALAXY CLUSTERS: WHAT 
PHYSICAL QUANTITIES CAN WE DERIVE ?   



RADIATION FROM AN 
ACCELERATED CHARGE:  

EURISTIC  DERIVATION 
(Thomson 1903)  
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key r-1 dependence of acceleration field: it will allow the  
transport of energy, i.e. radiation   



LARMOR’S FORMULA 
 The outflow is energy is calculate through the Poynting vector 




2

42

22
2 sin

44 cr

aqc
E

c
S rad 




2

3

22

sin
4 c

aq

dtd

dW




Multiply for 
the area r2dΩ 

2

3

2

3

2
a

c

q

dt

dW
P 



LARMOR’S FORMULA 
 •Power radiates is proportional 

to the square of the charge and 
the square of the acceleration 
•Characteristic dipole pattern 
proportional to sin2θ: no 
radiation emitted in the 
direction of acceleration and 
the maximum is emitted 
perpendicular to the 
acceleration 
•The radiation is polarized: if 
the particle accelerated along a 
line, we will have a 100% 
polarization  



RADIATION FROM AN 
ACCELERATED CHARGE:  

RIGOROUS DERIVATION 
  
 

Fully relativistic, exploiting the fact that P = dW/dt is a 
relativistic invariant. It starts from Maxwell’s equations 
using the scalar and vector potentials at retarded times  
(Liénard-Wiechart potentials) 
If we want the fileds at point r and time t we first must 
determine the “retarded” position and time of the 
particle rret and tret 
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Velocity field: reduces to electrostatic when ß=0 
It does not transport energy: SxA proportional to r-2 0 
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Acceleration field: it transports energy because SxA 
does not go to zero 
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Which is the expression we already found in the euristic 
derivation  





THE RADIATION SPECTRUM 
 The spectrum of radiation depends on the time variation of 

the electric field 
There’s no meaning in a spectrum at a precise instant of 
time, you can know only of a spectrum during a sufficiently 
long time ∆t and still you can only define the spectrum to 
within a frequency resolution ∆ωΔt > 1 
You use Fourier analysis and the properties of Fourier 
transforms to work out the spectral properties of the 
radiation 
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Fourier transform of E(t) 
Contains all the 
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frequency behavior of E(t) 



THE RADIATION SPECTRUM 
 

Total energy per unit area in terms 
of the Poynting vector 
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DIPOLE APPROXIMATION 
 

Consider a system with many particles with positions ri 
velocities vi in principle retarded times will differ for each 
particle. 
It is possible to ignore this difficulty in some situations: τ is 
the typical time scale for changes, then if τ >> L/c then the 
differences are negligible 



DIPOLE APPROXIMATION 
 

The condition τ >> L/c translates into, if ν ≈1/τ, c/ν >> L 

which means λ >> L size of the system small compared to 
wavelength. 
Another way is to consider as l the characteristic scale of 
the particle’s orbit, then τ ≈ l/v and so v/c << l/L equivalent 
to the non relativistic condition v << c  
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DIPOLE APPROXIMATION 
 

Spectrum of radiation in the dipole approximation 

Fourier transform of d(t) 
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Interesting property of 
dipole radiation that the 
emitted spectrum is related 
directly to the frequencies of 
oscillation of the dipole 
moment 



BREMSSTRAHLUNG 
 

Radiation due to the acceleration of a charge in the Coloumb 
field of another charge (also free-free emission) 
Classical treatment then quantum correction (Gaunt factor) 
to the classical formula 
Collisions of like-particles in the dipole approximation is 
zero because dipole proportional to the constant center of 
mass  



BREMSSTRAHLUNG IN A NUTSHELL 
 •Electron of mass me with impact parameter b and velocity 

v in the Coloumb field of the proton 

•The acceleration of the electron is a≈(q2/ meb2) and lasts 
for a time b/v 

•This encounter will result in a emission of energy 
W≈(q2a2/c3)(b/v)≈(q6/c3me

2b3v)≈ (q6ni/c3me
2v) as b≈ni

-1/3 

•The total energy radiated per unit volume will be neW 

•Because each collision lasts for a time (b/v) there will be 
little radiation at frequencies greater than (v/b). For 
frequencies lower than (v/b) we may take the energy 
emitted per unit frequency as nearly constant 

•In the case of plasma in thermal equilibrium v≈(kBT/me)1/2 



BREMSSTRAHLUNG IN A NUTSHELL 
 

•Bremsstrahlung spectrum is flat up to kT/h and it will fall 
rapidly beyond that frequency, simply because and electron 
with typical energy kT cannot emit photons with higher 
energy 
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EMISSION FROM SINGLE SPEED 
ELECTRONS 

 

Small-angle scattering regime: the electron moves rapidly 
enough that the deviation from a straight line is negligible 
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EMISSION FROM SINGLE SPEED 
ELECTRONS 

 
Collision time 
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EMISSION FROM SINGLE SPEED 
ELECTRONS 

 

Total spectrum for a medium with ion density ni, electron 
density ne, and for a fixed speed v. The flux of electrons 
incident on one ion is nev and the element of area is 2πbdb   
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EMISSION FROM SINGLE SPEED 
ELECTRONS 

 

bmax = v/ω whereas for bmin we can have a classical limit 
where all the maximum potential energy is converted into 
kinetic energy or quantistic when the indetermination 
principle takes action. To be general the Gaunt factor is 
introduced   
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THERMAL BREMSSTRAHLUNG 
 We need to average over a distribution of velocities: the 

ones astrophysically relevant are power-laws and thermal 
(Maxwellian) distribution   
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THERMAL BREMSSTRAHLUNG 
 



Clusters of Galaxies 

 

 



Why study Clusters  

• Clusters are the largest structures in the Universe to 

have clearly decoupled from the Hubble flow, they 

carry important cosmological information  

• Physical conditions in clusters are unlike anywhere 

else. They allow us to explore physical phenomena 

under unique conditions. 



Galaxy Clusters for beginners 

Overview 

• Basic properties of Galaxy Clusters 

• Zero order model for the Intra Cluster Medium 

• Global measurements of T and Z 

• Spatially Resolved Spectroscopy  



 Setting the context 

• The ICM is tenuous, typical densities 10-4 

to a few 10-2 cm-3 . 

• These are very low densities, 

     the tail lobes of the earth magnetosphere 
have densities of 10-2 cm-3 . 

 

Basic properties of the ICM 



 Setting the context 

• The ICM is hot, temperatures are in the 

range of 107 to 108 K (1-10 keV)  

• highly ionized: H, He completely ionized 
heavier elements partially ionized 

• Chemically enriched,  heavy elements such 
as O, Si and Fe are present in almost solar 
proportions 

 

Basic properties of the ICM 



 Setting the context 

    Weakly magnetized typically 0.1 to a few μGauss 

 

• Galactic magnetic field             10 μGauss  

• Solar Wind                          50 μGauss  

• Interstellar molecular cloud        1  mGauss  

• Earth's field at ground level       1  Gauss  

• Solar surface field                1-5 Gauss  

• Massive star (pre supernova)     100 Gauss  

• Sun spot field                     1000 Gauss  

Basic properties of the ICM 



 Setting the context 

     

Basic properties of the ICM 

The X-ray emission from clusters is 

extended. 



 Setting the context 

     



X-Ray Imaging 

X-rays and optical light show us a different picture  



X-Ray Imaging 

X-rays and optical light show us a different picture  



Galaxy clusters are the most massive (M~1014-1015 MSUN) 

objects in the Universe 

Galaxies (5%) 

Intra-cluster medium (ICM) 

Thermal plasma 

X-rays (10-30%) 

Dark Matter 

Gravitational potential 

1E 0657-156 THE BULLET CLUSTER 

Relativistic 

particles 

Radio 



Properties of groups and clusters 

BHACALL 1999 

                              CLUSTERS                                   GROUPS/POOR CLUSTERS 

LX (erg/s)             1043 -  1045                                                1041.5 -  1043 

kTX (keV)                  2 – 15                                                       ≤ 2 

N gal                        100-1000                                                5 – 100 

σv (km/s)              500-1200 (median 750)                        200 – 500 

Mtot (< 1.5 Mpc)     1014 – 5 x 1015                                        1012.5  - 2 x 1014   

Number Density      10-5 – 10-6 Mpc-3                                    10-3 – 10-5 Mpc-3  

 

Groups and poor clusters provide a natural and continuous extension to lower mass, size, 

luminosity and richness of rich, massive and rare clusters 



X-Ray Imaging 

• Central regions feature 

approx. constant surface 

brightness  

 

• In outer regions the 

surface brightness falls 

off as a power-law with 

index approx. 3   

 

• Emission is traced out to 

1-2 Mpc from the core 
Mohr et al. (1999) 



 Timescales & other fundamentals 
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The ICM cools by emitting radiation 
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innermost regions 

where  np is high, gas 

cools on timescales > 

Hubble time  

In first approx. we may consider the ICM as 

a stationary ball of hot plasma 



Heating 
• No major on-going heating of the gas is 

necessary (the cooling is very slow) 
• The ultimate origin of the bulk of the thermal 

energy of the ICM is the gravitational energy 
lost by the gas as it falls into the cluster’s 
potential well   
 
 
 

• The temperature of the ICM is related to the 
depth of the potential well and to the total 
mass of the cluster 
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• The ICM is highly ionized 

    Tg ~ 107 – 108                   H, He  completely ionized 

• Coulomb interactions are the dominant mechanism for 
collisions, for  Te = Ti the mean free path is: 
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Timescale for a sound-wave to 
cross the cluster  
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Continuum emission is dominated by thermal 
bremsstrahlung 
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spectrum normal.  ng 

 

Radiation process 

 

 

 
Optically thin: ng σT L ≈ 10-2 6.65x10-25 3.18x1024 ‹‹ 1     



Line emission 

The Fe Kα complex ~ 7 keV is 

dominated by emission from 

He-like (6.7 keV) and H-like 

(6.9 keV), the ratio of lines 

intensity depends upon the 

ionization state of the gas 

which is a function of the gas 

temperature.                    



Summary of basic properties  

• A hot, tenuous and weakly magnetized plasma (ICM) 
rests in the potential well of galaxy clusters  

• The temperature of the ICM is related to the total 
mass of the cluster   

• The ICM is enriched and heavily ionized 
• It dissipates energy at a very slow rate by emitting X-

rays  by thermal bremsstrahlung 
• It can be treated as a fluid in hydro-static equilibrium  
• The pressure associated with the weak B field does not 

drive gas dynamics 

For contacts: http://www.iasf-milano.inaf.it/~gasta/personal.html 

                      gasta@lambrate.inaf.it 


