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ABSTRACT
Galdxy clusters appear as extended sources in XMM—-Newton images, but not all extended sources are clusters. So, their proper
i requires visual inspection with optical images, which is a slow process with biases that are almost impossible to
model. We tackle this problem wuh a novel approach, using convolutional neural networks (CNNs), a state-of-the-art image
1 tool, for i ification of galaxy cluster candidates. We train the networks on combined XMM-Newton
X-ray observations with their optical counterparts from the all-sky Digitized Sky Survey. Our data set originates from the
XMM CLuster Archive Super Survey (X-CLASS) survey sample of galaxy cluster candidates, selected by a specially developed
pipeline, the XAmin, tailored for extended source d ion and characterization. Our data set contains 1707 galaxy cluster
candidates classified by experts. Additionally, we create an official Zooniverse citizen science project, The Hunt for Galaxy
Clusters, to probe whether citizen volunteers could help in a challenging task of galaxy cluster visual confirmation. The project
contained 1600 galaxy cluster candidates in total of which 404 overlap with the expert’s sample. The networks were trained on
expert and Zooniverse data separately. The CNN test sample contains 85 spectroscopically confirmed clusters and 85 non-clusters
that appear in both data sets. Our custom network achieved the best performance in the binary classification of clusters and
non-clusters, acquiring a Lurd(.y of 90 per cent, averaged after 10 runs. The results of using CNNs on combined X-ray and optical

data for galaxy cluster ssification are ing, and there is a lot of potential for future usage and improvements.
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ABSTRACT

The origin of the diverse population of galaxy clusters remains an unexplained aspect of large-scale structure formation and
cluster evolution. We present a novel method of using X-ray images to identify cool core (CC), weak cool core (WCC), and non-
cool core (NCC) clusters of galaxies that are defined by their central cooling times. We employ a convolutional neural network,
ResNet-18, which is commonly used for image analysis, to classify clusters. We produce mock Chandra X-ray observations for
asample of 318 massive clusters drawn from the //lustrisTNG simulations. The network is trained and tested with low-resolution
mock Chandra images covering a central 1 Mpc square for the clusters in our sample. Without any spectral information, the
deep learning algorithm is able to identify CC, WCC, and NCC clusters, achieving balanced accuracies (BAcc) of 92 per cent,
81 per cent, and 83 per cent, respectively. The performance is superior to classification by conventional methods using central
gas densities, with an average BAcc = 81 per cent, or surface brightness concentrations, giving BAcc = 73 per cent. We use
class activation mapping to localize discriminative regions for the classification decision. From this analysis, we observe that the
network has utilized regions from cluster centres out to r 2 300 kpe and 2 500 kpc to identify CC and NCC clusters, respectively.
It may have recognized features in the intracluster medium that are associated with AGN feedback and disruptive major mergers.

Key words: methods: data analysis — galaxies: clusters: intracluster medium — X-rays: galaxies: clusters.
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e Both works use ML techniques (CNNs, LeCun et al. 1999)

® Direct application to galaxy clusters

e |love citizen science ;)




Introduction to machine learning

Machine learning

Definition of ML (T. Mitchell in 1998)

Natural language processing

A computer program is said to learn
' Knowledge reasoning from experience E with respect to
some class of tasks T and performance
measure P, if its performance on

T, as measured by P, improves with
Platining experience L.

Computer vision

Speech

Robotics




Introduction to machine learning

Different algorithms: supervised learning, unsupervised learning, reinforcement learning...
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Selection of the model

Neural network

A Input Layer =~ Hidden Layer
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Linear regression example

MSE(train)
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Define metrics and statistical estimators for model performance (in classification
problems: cost function, precision, accuracy, recall, ROC, AUC)
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Error

Train, validation
and test set

Total number of examples
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In many cases, part of the
dataset is used for
validation (fine tuning of
the hyperparameters).




Convolutional Neural Networks:

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neu
ral-networks-the-eli5-way-3bd2b1164a53
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Multiwavelength classification of X-ray selected galaxy
cluster candidates using CNNs (Kosiba et al. 2020)

Starting point:

ABSTRACT

Galaxy clusters appear as extended sources in XMM—Newton images, but not all extended sources are clusters. So, their proper
classification requires visual inspection with optical images, which is a slow process with biases that are almost impossible to
model. We tackle this problem with a novel approach, using convolutional neural networks (CNNs), a state-of-the-art image
classification tool, for automatic classification of galaxy cluster candidates. We train the networks on combined XMM-Newton

Aim of the work: How?

Evaluate the ability of supervised They compare the results obtained with
learning with CNNs in classifying CNNs with classifications made by experts
cluster and non cluster candidates. and the Hunt for Galaxy Clusters project.




The Hunt for Galaxy Clusters project (link)

2 THE HUNT FOR GALAXY CLUSTERS

Our citizen science project, The Hunt for Galaxy Clusters," was
launched online as an official Zooniverse project on 2018 October
24. There were 1600 galaxy cluster candidates in the project that have
been detected as extended X-ray sources by the XAmin wavelet-
based pipeline (Pacaud et al. 2006). Each object was classified
by at least 30 different volunteers, and this was completed by
2019 April 29. In total, 1227 volunteers participated in the project.



https://www.zooniverse.org/projects/matej-dot-kosiba/the-hunt-for-galaxy-clusters

The Hunt for Galaxy Clusters project (link)

2 THE HUNT FOR GALAXY CLUSTERS

Our citizen science project, The Hunt for Galaxy Clusters," was
launched online as an official Zooniverse project on 2018 October
24. There were 1600 galaxy cluster candidates in the project that have
been detected as extended X-ray sources by the XAmin wavelet-
based pipeline (Pacaud et al. 2006). Each object was classified
by at least 30 different volunteers, and this was completed by
2019 April 29. In total, 1227 volunteers participated in the project.

2.1 Data

The data in this work originate from the XMM CLuster Archive
Super Survey (X-CLASS; Clerc et al. 2012), an X-ray galaxy
cluster search in the archival data of the European Space Agency’s
X-ray observatory XMM-Newton, combined with corresponding
optical counterparts from the Digitized Sky Survey POSS-II (DSS2).
We used XMM-Newton data obtained between 2000 and 2015,
employing selection criteria described in (Clerc et al. 2012), and
excluding the data used by the XXL survey (Pierre et al. 2016).



https://www.zooniverse.org/projects/matej-dot-kosiba/the-hunt-for-galaxy-clusters

2 THE HUNT FOR GALAXY CLUSTERS

Our citizen science project, The Hunt for Galaxy Clusters," was
launched online as an official Zooniverse project on 2018 October
24. There were 1600 galaxy cluster candidates in the project that have
been detected as extended X-ray sources by the XAmin wavelet-
based pipeline (Pacaud et al. 2006). Each object was classified
by at least 30 different volunteers, and this was completed by
2019 April 29. In total, 1227 volunteers participated in the project.

2.1 Data

The data in this work originate from the XMM CLuster Archive
Super Survey (X-CLASS; Clerc et al. 2012), an X-ray galaxy
cluster search in the archival data of the European Space Agency’s
X-ray observatory XMM-Newton, combined with corresponding
optical counterparts from the Digitized Sky Survey POSS-II (DSS2).
We used XMM-Newton data obtained between 2000 and 2015,
employing selection criteria described in (Clerc et al. 2012), and
excluding the data used by the XXL survey (Pierre et al. 2016).

The Hunt for Galaxy Clusters project (link)

Look atimages 1 & 3. Do you see X-ray
emission close to the centre of the image?

2
Emission near
the chip edge

Look at images 1 & 3. Is the X-ray
emission point-like or extended?

—
Pointlike
emission

Look at all images. Is the X-ray emission dominated
by a single galaxy in the optical images?

Do you see lots of galaxies close
to the centre of the image?

Do you think that this is a Do you think that this is a
nearby galaxy cluster? distant galaxy cluster?



https://www.zooniverse.org/projects/matej-dot-kosiba/the-hunt-for-galaxy-clusters

The Hunt for Galaxy Clusters project (link)

Each volunteer is provided with four 7’ x 7’ images: two X-ray and two optical images.
The project uses six questions to help determine the class of a galaxy cluster candidate.

[ xcLass



https://www.zooniverse.org/projects/matej-dot-kosiba/the-hunt-for-galaxy-clusters

The Hunt for Galaxy Clusters project (link)

Each volunteer is provided with four 7’ x 7’ images: two X-ray and two optical images.
The project uses six questions to help determine the class of a galaxy cluster candidate.

Each object is classified by more than 30 volunteers.
Each classification is weighted according to the
agreement of the majority:

Ci
Gi=—;1€1;:+06, (1)
Q

; | xcLass
where G; is the weight applied for an individual on question i, C; is
the number of answers to question i given by the individual that were
in agreement with the majority, and Q; is the total number of answers

the individual has made for question i.



https://www.zooniverse.org/projects/matej-dot-kosiba/the-hunt-for-galaxy-clusters

Classification by experts

Each galaxy cluster candidate is classified by
two experts and three moderators make | e
the final classification on conflicting
decisions.

The experts classify objects as: low-redshift
cluster (0 < z < 0.3), high-redshift cluster (z
> 0.3), nearby galaxy, point source and
some additional subclasses.




Machine learning approach

They use Convolutional Neural Network, with binary
(cluster and non-cluster) classification + additional
subcategories.

Layer Layer type Filter shape/stride Input shape

1 Conv 3 x 3 x 64/(1,1) 356 x 356 x 3
2 Max pool 2% 202,2) 356 x 356 x 64
3 Conv 3 x 3 x 32/1,1) 178 x 178 x 64
4 Max pool 2 x 2/2,2) 178 x 178 x 32
D Conyv 3 x 3 x 32/(1,1) 89 x 89 x 32
6 Max pool 2% 22,:2) 89 x 89 x 32
7 Conv 3 x 3 x 32/(1,1) 45 x 45 x 32
8 Max pool 2 x 2/2,2) 45 x 45 x 32
9 Conv 3 x 3 x 32/1,1) 23 x 23 x 32
10 Max pool 2.:x 202,2) 23:'x23:x 32
11 Conv 3 x 3 x 32/(1,1) 12 %12%.32
12 Max pool 2% 22,2 1235025632
13 Flatten - 6x6x32
14 Dense 256 1152

15 Dense 2 256
Hyperparameters Custom net MobileNet
Batch size 10 20
Iterations 153 000 3825
Optimizer SGD Adadelta
Nest. Momentum 0.90 -

Rho - 0.95
Initial Ir. 0.0001 1.0

Ir. decay 10-6 0.95
Minimal Ir, 10~ (link) 0.01

Ir. red. patience 14 4

Ir. red. factor 0.75 0.85
Dense dropout 0.65 / 0.65
Output activation softmax softmax
Loss function cat. cross-entropy cat. cross-entropy
Input image size 356 x 356 224 x 224



https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/categorical-crossentropy

Machine learning approach

They use Convolutional Neural Network, with binary
(cluster and non-cluster) classification + additional
subcategories.

For each candidate cluster, a pair of X-ray and optical
PNG images were merged into a single PNG image.

They also use data augmentation to reduce the
probability of overfitting.

Layer Layer type

Filter shape/stride

Input shape

| Conv 3 x 3 x 64/(1,1) 356 x 356 x 3
2 Max pool 2% 20(2,2) 356 x 356 x 64
3 Conv 3 x 3 x 32/1,1) 178 x 178 x 64
4 Max pool 2 x 2/2,2) 178 x 178 x 32
D Conyv 3 x 3 x 32/(1,1) 89 x 89 x 32
6 Max pool 2 x 2/(2,2) 89 x 89 x 32
7 Conv 3 x 3 x 32/(1,1) 45 x 45 x 32
8 Max pool 2 x 2/(2,2) 45 x 45 x 32
9 Conv 3 x 3 x 32/1,1) 23 x 23 x 32
10 Max pool 2.:x 202,2) 23:'x23:x 32
11 Conv 3 x 3 x 32/(1,1) 12 %12%.32
12 Max pool 2% 22,2 12:5%502:5¢:32
13 Flatten - 6x6x32
14 Dense 256 1152

15 Dense 2 256
Hyperparameters Custom net MobileNet
Batch size 10 20
Iterations 153 000 3825
Optimizer SGD Adadelta
Nest. Momentum 0.90 -

Rho - 0.95

Initial Ir. 0.0001 1.0

Ir. decay 10-6 0.95
Minimal Ir, 10~ (link) 0.01

Ir. red. patience 14 4

Ir. red. factor 0.75 0.85

Dense dropout 0.65 / 0.65
Output activation softmax softmax
Loss function cat. cross-entropy cat. cross-entropy
Input image size 356 x 356 224 x 224
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Accuracy is the most intuitive performance measurement. It is the
ratio of correct predictions to all predictions and is defined as
TP+ TN
~ TP+ TN +FP+FN’
where TP refers to the number of true positives, in our case the
number of clusters correctly classified as clusters, TN is a number
of true negatives (number of non-clusters correctly classified as non-
clusters), FP is a number of false positives (number of non-cluster
incorrectly classified as clusters), and FN states for a number of false
negatives (number of clusters incorrectly classified as non-clusters).
Precision is the ratio of the correctly classified positives (i.e.
clusters) and all objects classified as positives. This is defined as
TP
P=———.
TP + FP
Recall is the ratio of the correctly classified positives and all
positives examples in the test data. It is defined as
TP
R=——.
TP + FN
The receiver operating characteristic (ROC) is a performance
measurement of detection problems plotted as a true positive rate
(recall) against the false positive rate, defined as

TN

BP R e This is not FPR... (5)

A 2

(3)

)

at various thresholds. The area under the curve (AUC) describes the
model’s capability to distinguish between two classification classes
and is independent of the choice of the threshold. When reporting
detection performance for a class (from the CNN output) in terms
of ROC curve, we compare the posterior probability of the class to a
varying detection threshold.



https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
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Accuracy is the most intuitive performance measurement. It is the
ratio of correct predictions to all predictions and is defined as
_ TP+ TN
~ TP+ TN +FP+FN’

where TP refers to the number of true positives, in our case the
number of clusters correctly classified as clusters, TN is a number
of true negatives (number of non-clusters correctly classified as non-
clusters), FP is a number of false positives (number of non-cluster
incorrectly classified as clusters), and FN states for a number of false
negatives (number of clusters incorrectly classified as non-clusters).
Precision is the ratio of the correctly classified positives (i.e.
clusters) and all objects classified as positives. This is defined as
TP

P= T (3)

A 2

] What are the thresholds
for this problem?

is the ratio of the correctly classified positives and all
examples in the test data. It is defined as
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The receiver operating characteristic (ROC) is a performance
measurement of detection problems plotted as a true positive rate
(recall) against the false positive rate, defined as

TN

FPR= 79" 1p

(5)

at various thresholds.h‘he area under the curve (AUC) describes the

model’s capability to distinguish between two classification classes
and is independent of the choice of the threshold. When reporting
detection performance for a class (from the CNN output) in terms
of ROC curve, we compare the posterior probability of the class to a
varying detection threshold.
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The sample

Class Zooniverse Experts
Train Validate Train Validate Test

Cluster 320 130 845 200 85
Non-cluster 880 100 388 104 85
Total 1200 230 1233 304 170

Experts 1707 objects

test objects

24404

Zooniverse 230
validation objects 63

Expert 304
validation
objects

Number of overlapping objects Crossmatch sample

Zooniverse sample: 1600 candidates
cxpert sample: 1707 candidates
Crossmatch sample: 404 candidates

Test sample:

85 spectroscopically
confirmed galaxy clusters
85 objects classified as
non-clusters by experts




Results - The Hunt for Galaxy Clusters

Assuming that the expert classifications are the ground truth.

TP + TN

The Zooniverse volunteers performed better on A= B TINTFPIEN
the subsample of 170 objects.
e R
~ TP+FP’
TP
R = :
TP + FN
Data set Zooniverse classifications TP TN FP FN  Accuracy Precision Recall
404 objects Unweighted 69 150 0 185  0.542 1.000 0.272
404 objects Weighted 102 149 1 152 0.621 0.990 0.401
170 objects Weighted 55 84 1 30 0.818 0.982 0.647




Results - The Hunt for Galaxy Clusters

Assuming that the expert classifications are the ground truth.

mmm Al classifications
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The Zooniverse volunteers performed better on
the subsample of 170 objects.
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In general, the Zooniverse volunteers 0
preferentially classified objects as non-clusters.

Figure 6. A quantification of the Zooniverse classifications for (a) no emis-
sion, (b) edge, (c¢) point, (d) nearby galaxy, (e) no optical image, (f)
nearby galaxy cluster, and (g) distant galaxy cluster, assuming the ground
truth is the expert classification.

Data set Zooniverse classifications TP TN FP FN  Accuracy Precision Recall
404 objects Unweighted 69 150 0 185 0.542 1.000 0.272
404 objects Weighted 102 149 1 152 0.621 0.990 0.401

170 objects Weighted 55 84 1 30 0.818 0.982 0.647




Results - The Hunt for Galaxy Clusters

The galaxy clusters found by Zooniverse volunteers i ’
populate all of the space, not showing bias. e

Extension likelihood

Figure B1. Extent—extension likelihood plane for objects of the 170 test
sample classified by experts and the Zooniverse volunteers.

clusters in train sample (experts)
@ non-clusters in train sample (experts)
« clusters in train sample (zooniverse)
«  non-clusters in train sample (zooniverse)

Extent (arcsec)

Extension likelihood

Figure B2. Extent—extension likelihood plane for objects of the experts train
sample and the Zooniverse train sample.




The galaxy clusters found by Zooniverse volunteers
populate all of the space, not showing bias.

Results - The Hunt for Galaxy Clusters

Even though the Zooniverse volunteers did not show a high
accuracy compared to experts, misclassifying many galaxy clusters
as other options, the sample of galaxy clusters they selected is pure.
This makes us conclude that, via the Zooniverse project, the general
public can help scientific research where a very pure sample of galaxy
clusters is required, but it did not prove to be helpful in a case where
a sample of galaxy clusters should be complete.

clusters in 170 test sample (experts)
non-clusters in 170 test sample (experts)
« clusters in 170 test sample (zooniverse)

« non-clusters in 170 test sample (zooniverse)

Extent (arcsec)

10° 10* 10°
Extension likelihood

Figure B1. Extent—extension likelihood plane for objects of the 170 test
sample classified by experts and the Zooniverse volunteers.
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« clusters in train sample (zooniverse)
«  non-clusters in train sample (zooniverse)

Extent (arcsec)

10? 10° 10* 10° 10°
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Figure B2. Extent—extension likelihood plane for objects of the experts train
sample and the Zooniverse train sample.




Results - The Hunt for Galaxy Clusters

The galaxy clusters found by Zooniverse volunteers
populate all of the space, not showing bias.

Even though the Zooniverse volunteers did not show a high
accuracy compared to experts, misclassifying many galaxy clusters
as other options, the sample of galaxy clusters they selected is pure.
This makes us conclude that, via the Zooniverse project, the general
public can help scientific research where a very pure sample of galaxy
clusters is required, but it did not prove to be helpful in a case where
a sample of galaxy clusters should be complete.

What about a ML approach also for the
Zooniverse project?
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Figure B1. Extent—extension likelihood plane for objects of the 170 test
sample classified by experts and the Zooniverse volunteers.
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Figure B2. Extent—extension likelihood plane for objects of the experts train

sample and the Zooniverse train sample.




Results - Machine learning approach
The best results are obtained with networks
trained on the expert classified data set.

Training using the labels obtained in the
Zooniverse project resulted in lower performance.

True positive rate

Table 5. Averaged galaxy cluster candidate classification results of the networks each trained 10 times with the exact
same hyperparameters, only with a different seed for generation of random numbers during its initialization.

Network A +std P+ std R £ std AUC = std
CN-E 0.90 +0.03 0.89 +0.05 0.91 £ 0.03 0.96 £+ 0.01
MN-E 0.88 4+ 0.02 0.87 +0.03 0.91 +0.03 0.94 + 0.01
CN-E solo optical 0.68 + 0.02 0.64 +0.02 0.85 + 0.04 0.77 £ 0.02
CN-E solo x-ray 0.81 £ 0.01 0.78 +0.03 0.86 + 0.04 0.89 £+ 0.01
CN-Z 0.82 +0.01 0.96 4+ 0.01 0.67 + 0.02 0.91 £ 0.01
MN-Z 0.79 + 0.02 0.96 +0.03 0.62 + 0.03 0.86 + 0.02
CN-E no augm. 0.75 £ 0.02 0.70 = 0.02 0.87 £ 0.03 0.87 £ 0.01
MN-E no augm. 0.81 +0.01 0.75 £ 0.02 0.91 £ 0.01 0.90 £ 0.02

o
o
)

o
-
L

0.2 1

s CN-E
e MN-E
Pid —— CN-E solo optical
P CN-E solo X-ray
> = CN-Z
’ —— MN-Z
7 —— CN-E no augm.
i —— MN-E no augm.

0.2 0.4 0.6 0.8 1.0
False positive rate

Input images are classified as

galaxy clusters if the output

probability is higher than 0.5.




Results - Machine learning approach False negatives

False positives

True positives




Results - Machine learning approach False negatives

False positives

7 Do count-rate images
= (without CCD gaps) help

True positives reducing false positives?




Results - Machine learning approach

MUltiC/aSS C/GSSIfiCGtion, Table 6. Results from the multiclass classification networks.

Class A P R

. MN greyscale
Ave ra ge resu Its . Low-z cluster 0.77 0.62 0.94 0.93
High-z cluster 0.87 0.56 0.22 0.91
Point source 0.87 0.88 0.36 0.89
Nearby galaxy 0.90 0.70 0.73 0.92
e MN: (914_-2)% AUC; (864_-6)% acc. Other 0.91 0.65 0.68 0.92
CN greyscale
Low-z cluster 0.79 0.68 0.81 0.89
High-z cluster 0.84 0.44 0.65 0.89
e CN: (88i2)% AUC; (854_-4)% acc. Point source 0.84 0.75 027 0.88
Nearby galaxy 0.89 0.74 0.57 0.85
Other 0.87 0.52 0.64 0.88
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The ROC curves and performance
> H
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measurements were calculated as
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False positive rate False positive rate

Figure 13. ROC curves for multiclass classification performed by the MobileNet architecture (leff) and our custom network (right).




Results - Machine learning approach

Multic/ass C/aSS[fica tion . Table 6. Results from the multiclass classification networks.
Class A V3 R AUC
MN greyscale
Low-z cluster 0.77 0.62 0.94 0.93
High-z cluster 0.87 0.56 0.22 0.91
H Point source 0.87 0.88 0.36 0.89
Why is the AUC for the Near by Nearby galaxy 0.90 0.70 0.73 0.92
Other 0.91 0.65 0.68 0.92
galaxy class the lowest?
CN greyscale
Low-z cluster 0.79 0.68 0.81 0.89
High-z cluster 0.84 0.44 0.65 0.89
Point source 0.84 0.75 0.27
Nearby galaxy 0.89 0.74 0.57
Other 0.87 0.52 0.64
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The ROC curves and performance
measurements were calculated as

# Bt P = one versus all problems.
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Figure 13. ROC curves for multiclass classification performed by the MobileNet architecture (leff) and our custom network (right).




Results - Machine learning approach

10-fold cross-validation (link)

The original data set is randomly partitioned
into k equal sized subsample. A single
subsample is used as validation, the
remaining k-1 subsamples as training data.

Compute the average
over the k results.

Example of K-fold with k=4

1.0 1
0.8 [
0000 000000000000000 ;
o
[lesion 2> 0O OSOD200T0090000000 A
= ,*" — fold 2, AUC = 0.952
MOOOOOOOOOMOOQQ 2 7 — toa3 auc=osse
L 0.4 2 — fold 4, AUC = 0.931
£ g —— fold 5, AUC = 0.955
-~ —— fold 6, AUC = 0.959
Mo”ocooooooooo_ — fold 7. Auc = 0961
: P —— fold 8, AUC = 0.970
1' All data [l —— fold 9, AUC = 0.970
g —— fold 10, AUC = 0.965
0.0

0.2 0.4 0.6 0.8 1.0
False positive rate



https://machinelearningmastery.com/k-fold-cross-validation/

Summary




Summary

The Hunt for Galaxy Cluster Project:

® Zooniverse volunteers classified 1600 cluster candidates, obtaining a 62%
agreement with experts.
e The sample selected by Zooniverse volunteers is pure.




Summary

The Hunt for Galaxy Cluster Project:

® Zooniverse volunteers classified 1600 cluster candidates, obtaining a 62%
agreement with experts.
e The sample selected by Zooniverse volunteers is pure.

Machine learning approach:
e The custom network obtained an average accuracy of 90% (in agreement with

10-fold cross-validation).
e The custom network gives good results also for multiclass classification.




A deep learning view of the census of galaxy clusters in
IllustrisTNG (Su et al. 2020)

ABSTRACT
The origin of the diverse population of galaxy clusters remains an unexplained aspect of large-scale structure formation and
cluster evolution. We present a novel method of using X-ray images to identify cool core (CC), weak cool core (WCC), and non-
cool core (NCC) clusters of galaxies that are defined by their central cooling times. We employ a convolutional neural network,
ResNet-18. which is commonly used for image analysis, to classify clusters. We produce mock Chandra X-ray observations for
a sample of 318 massive clusters drawn from the /llustrisTNG simulations. The network is trained and tested with low-resolution
mock Chandra images covering a central 1 Mpc square for the clusters in our sample. Without any spectral information, the
deep learning algorithm is able to identify CC, WCC, and NCC clusters, achieving balanced accuracies (BAcc) of 92 per cent,
81 per cent, and 83 per cent, respectively. The performance is superior to classification by conventional methods using central
gas densities, with an average BAcc = 81 per cent, or surface brightness concentrations, giving BAcc = 73 per cent. We use
class activation mapping to localize discriminative regions for the classification decision. From this analysis, we observe that the
network has utilized regions from cluster centres out to = 300 kpc and = 500 kpc to identify CC and NCC clusters, respectively.
It may have recognized features in the intracluster medium that are associated with AGN feedback and disruptive major mergers.

This work presents a “novel method (ML approach) of using X-ray images
to identify cool core (CC), weak cool core (WCC) and non cool core (NCC)
galaxy clusters”,




The sample

We select galaxy clusters with a total mass within Rso! above
Mspy = 10375 My, using the Friends-of-Friends algorithm (Davis
etal. 1985) from the z = 0 snapshot in the TNG300 simulation, which
forms an unbiased mass-limited sample of 318 massive clusters.

The radiative cooling time is defined as:

3 (l’le +n,)kBT
2n.n;N(T, Z)

leool =

Classifications obtained through the cooling
time are the true labels for CNN training.

Average t(cool) are calculated from a 3D
sphere within 0.012 R500 (Barnes et al. 2018)

25+

N
o

t>7.7 Gyr

Cooling time (Gyr)
5 G

t<1Gyr

of -
136 138 140 142 144 146 148 150 0
Mso0

Figure 1. Distributions of central cooling times and logMs500/M, of TNG300
clusters in our sample. Their central cooling times are in the range of 0.012—
27.85 Gyr. We define CC and NCC clusters as those with cooling times shorter
than 1 Gyr and longer than 7.7 Gyr, respectively. Clusters with 1 < fcq01 <
7.7 Gyr are defined as WCC clusters. Clusters in our sample have M5 in the

range of 1013751506 v \

Barnes et al. 2018




The sample

CC Ms500=14.09 CC Ms500=13.99

WCC M500=14.67 WCC M500=14.45

\[e[® M500=14.62 NCC M500=14.16

CC Ms500=13.83 CC Ms500=14.25 CC Ms5g0=14.13

WCC M500=13.80 WCC M500=14.11 WCC M500=13.86

NCC Ms500=13.90 NCC Msp0=14.21 NCC Ms500=14.01

Final mock
images have a
dimension of
256 x 256 pixel®

The spatial
resolution is
degraded to

3.9” /pixel (8
times worse than
Chandra ACIS
resolution)



They apply a 10-fold cross-validation (8/10 training, 1/10 validation, 1/10 test).

They use data augmentation.

The ResNet-18 network expects a 3-channel input image: each image is replicated
three times to form a 256 x 256 x 3 image.

CNN architecture and training

____________ ] | i

Input

Residual Block




Model performance

As indicators for model performance, they
use: precision, recall, BAcc, Fl1-score

Confusion matrix

True Positives (TP) False Positives (FP)
eg.8 eg.2

False Negatives (FN)  True Negatives (TN)
eg.4 eg.20

Ideally, the confusion matrix is diagonal

We use the following criteria to evaluate the performance of each
experiment. Hereafter, #p, fp, tn, and fn are the numbers of true
positive, false positive, true negative, and false negative predictions,
respectively. Precision, also called positive predictive value, is the
number of true positives, divided by the number of all positive calls:

p
tp+fp
Recall, also called true positive rate, is the number of true positives
divided by the number of positive samples:

p
tp+ fn’

F-score is the harmonic mean of precision and recall, defined as

3)

Precision =

Recall =

“)

Precision - Recall
=2 0——m———— (%)
Precision + Recall
It conveys the balance between precision and recall and provides a
more comprehensive evaluation. We base our main conclusions on
F-score. Balanced accuracy (BAcc) is the average of true positive
predictions divided by the number of positive samples and true
negative predictions divided by the number of negative samples.
It is related to #p, fp, tn, and fn:

1 tp tn
BAcc = = ; 6
“=2 <1P+fn N rn+fp> ()

BAcc is a measurement of accuracy that does not suffer from
imbalanced data sets.




Other conventional methods for cluster classification

Density Concentration




Other conventional methods for cluster classification

Density Concentration

A rapidly cooling core implies a high central gas
density.

The central electron number density is calculated
within 0.012 R500 (Barnes et al. 2018):

e CC:ne>0.015cm-3
e WCC:0.005 < ne (cm-3) < 0.015
e NCC:ne<0.005cm-3

Following: Barnes et al. 2018; Hudson et al. 2010




Other conventional methods for cluster classification

Density Concentration

A rapidly cooling core implies a high central gas The elevated ICM metallicity and density at the
density. center of CCs produce a central peak in X-ray
surface brightness.

The central electron number density is calculated
within 0.012 R500 (Barnes et al. 2018): Concentration parameter (Santos et al. 2008):

e CC:ne>0.015cm-3 Cen — >_(< 40kpc)
SB: —

e WCC: 0.005 < ne (cm-3) < 0.015 (< 400kpc)

e NCC:ne<0.005cm-3

e CC:C>0.155

Following: Barnes et al. 2018; Hudson et al. 2010 e WCC:0.075<C<0.155

e NCC:C<0.075

Following: Barnes et al. 2018; Andrade-Santos et al. 2018




Results The Deep learning approach leads
to the highest F1-score!

Precision Recall
1.0 - CC
- WCC
L 3.Concentration
08
w “w 06
o o
o o
A a
04
02 0.99
00 wee e weo
deep learning density concentration deep learning density concentration Prediction Prediction Prediction
Fl-score Balanced Accuracy
- cc - cc
- wce -—wcC
- NCC - NCC
08 Method Ave. Fy Ave. BAcc Class Precision Recall F BAcc
cC 0.81 0.86 0.83 0.92
06 Deep learning 0.79 0.85 wCC 0.88 0.77 0.82 0.81
i o NCC 0.66 0.82 0.73 0.83
&o & cc 0.55 0.74 0.63 0.83
o Density 0.69 0.81 wce 0.92 0.58 0.71 0.75
NCC 0.57 0.99 0.72 0.86
02 CcC 0.49 0.45 0.47 0.70
Concentration 0.64 0.73 wCC 0.78 0.82 0.8 0.71
NCC 0.70 0.63 0.66 0.77
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Results The Deep learning approach leads
to the highest F1-score!

3.Concentration

0.86

On concentration-based classification...

Using this method,|we obtain an average F;-score of 0.33| for
clusters in our sample. Barnes et al. (2018) also note that this
criterion overpredicts NCC clusters and fails to identify CC clusters. " - - -
We further sort all the images with a decreasing Csg and divide

them into the three categories based on the fractions of CC, WCC,
and NCC in our sample.|We obtain an F;-score of 0.64|

Method Ave. Fy Ave. BAcc Class Precision Recall Fy BAcc

CcC 0.81 0.86 0.83 0.92

Deep learning 0.79 0.85 WCC 0.88 0.77 0.82 0.81
NCC 0.66 0.82 0.73 0.83

CcC 0.55 0.74 0.63 0.83

0.69 0.81 wCC 0.92 0.58 0.71 0.75

NCC 0.57 0.99 0.72 0.86

CcC 0.49 0.45 0.47 0.70

Concentration 0.64 0.73 wCC 0.78 0.82 0.8 0.71
0.70 0.63 0.66 0.77




Class activation mapping

For each input image, the authors generated a Class Activation Map (CAM) to
localize features that are most useful for the network.

Regions that are brighter are more informative for the network.

CAM value
°

00 300 400
Radius (kpc)

a g a4 o6 an 1o

Figure 9. Class activation maps of the central D = 1 Mpc averaged over CC, WCC, and NCC clusters, respectively. All these clusters are predicted correctly
with a probability above 0.9. The right-hand panel shows the radial profiles of the three CAM maps. The network utilizes relatively more information from
the cluster centres to identify CC clusters but relies on the morphology over a wider radial range to identify NCC clusters. The radial dependance of the
discriminating power of regions in WCC clusters is between those of CC and NCC clusters.




Class activation mapping

For each input image, the authors generated a Class Activation Map (CAM) to
localize features that are most useful for the network.

Regions that are brighter are more informative for the network.

CC WCC

Figure 9. Class activation maps of the central D = 1 Mpc averaged over CC, WCC, and NCC clusters, respectively. All these clusters are predicted correctly
with a probability above 0.9. The right-hand panel shows the radial profiles of the three CAM maps. The network utilizes relatively more information from
the cluster centres to identify CC clusters but relies on the morphology over a wider radial range to identify NCC clusters. The radial dependance of the
discriminating power of regions in WCC clusters is between those of CC and NCC clusters.

= The network uses regions
withinr=300 kpcandr=
500 kpc to identify CC
and NCC clusters,
respectively.

CAM value
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Class activation mapping

Should the integral of these
curves have the same value?

. —c The network uses regions
o withinr=300 kpcandr=
500 kpc to identify CC
and NCC clusters,

. respectively.
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Figure 9. Class activation maps of the central D = 1 Mpc averaged over CC, WCC, and NCC clusters, respectively. All these clusters are predicted correctly
with a probability above 0.9. The right-hand panel shows the radial profiles of the three CAM maps. The network utilizes relatively more information from
the cluster centres to identify CC clusters but relies on the morphology over a wider radial range to identify NCC clusters. The radial dependance of the
discriminating power of regions in WCC clusters is between those of CC and NCC clusters.




Summary

This paper shows a novel method for classifying CC, WCC and NCC clusters,
from their X-ray images.

e ResNet-18 achieves an average precision, recall, F1-score, and BAcc of 0.78,
0.82,0.79, and 0.85, respectively, well above a random prediction of 0.33.

e The deep learning algorithm outperforms the estimates given by the central
gas densities and surface brightness concentration parameters.

® The network may have utilized 2D features in X-ray images that are related to
the cooling and heating mechanisms in the ICM: features at larger radii are
more important for identifying NCC clusters than CC clusters.




