

SCIENTIFIC GOAL

- From tine primordial uniform Grotí, to tine current multifarious Universe. HOW?
- We know tíne pinysical mecínanisms (?), winat is th́e sequence of tine events? What are tine time scales?
- Follow observational ch́naracteristics tîrougin cosmic time.
- Track evolution versus Environment, Luminosity, galaxy Type.
- Have statistically significant numbers per cǐaracteristic and redsínift bin....
- Big numbers are needed (F̂undreds of tirousands objects)

Cosmological Surveys

- Now possible, titanks to larger telescopes, more powerful instruments

TECHNOLOGICAL GOAL

- Hundreds of tirousands of objects
- Impossible manual object by object approac̃̀r
- Reduction pipelines, analysis tools, databases are needed.

Astronomical Software

- Marriage between Cosmological Surveys and Astronomical Software is natural

THE GROUP

- Scientists
- D. Maccagni
+ M.Polletta
- P.Memeo
- D. Vergani
+ tine VVDS and zCosmos teams
- D.Bottini
- L.Chíappetti
- P.Franzetti
- B. Garilfi
- M.Scodeggio
+tine VO and ADASS community

Red: postDocs
Bfue: PRiD student

THE MAIN
INTERESTS/ACTIVITIES

- ViVAS
- UltraDeep
- Dynamics
- Mass Assembly
- Large Scale

Structure

- Star Formation

History

- DAB quality control
- XML
- DataBase
- Optical crossidentification
- AGN SED fitting
- z Cosmos
- Mass Assembly
- Large Scale

Structure

- Transition Objects
- Dynamics
- E + A galaxies
- Software
- Data reduction (vipgi)
- Redšitift measurement (EZ)
- SED fitting (gossip)
- DataBase access (dart)
- Virtual Observatory
- FutureAstronomicaSS/wEnvironment

HIGHLIGHTS ONRESULTS

- Very recent (<3 montirs)
- Work in progress
- IASF-MI centered

1. Software: EZ redş̆ift measurement
2. zCosmos: morpíiology of Star Burst galaxies
3. VVDS: mass vs. Environment
4. VVDS-Wide: cosmic variance

NEW EZ DEVELOPMENTS

EZ (Easy Redšififts): Tool to AVTOMATICALLL Tmeasure redsinifts from 1D spectra. World wide available since 1 year Bencítmark on 10000 spectra (2005)

- Ran EZ TOTALLY Gfindly
-compared witǐ "manually obtained" redşifts (assumed to be true)
Success rate: GLOBAL 75\%

$$
>90 \% \text { Secure } 92.5 \%
$$

Redšist reliability: automatically assigns a "reliability" flag to eač̀ redsinift
Benc̈rmarkon 22500 spectra

EZ flag	Aim	Result
HIGA	95%	96%
Medium	75%	71%
LOW	50%	34%

Fumana + Pandora team

ZCOSMOS. POSTSTARBURST GALAXIES

- $\mathrm{H}_{\delta} \mathrm{S}$ galaxies inave recently undergone some star forming episode
- Hdelta absorption traces recent (less tían 2 Gyr) star formation.
- PSB galaxies řave suddenly stopped forming stars (no [OII] emission).
- PSB and ${ }^{H_{\delta} S}$ to constrain tine star formation iristory of gafaxies
- Kiow it is activated and wiyy it stops.
- Gemini deep deep: $26 \mathrm{H}_{\delta} \mathrm{S}$ and 1-2 PSB galaxies.
- zCosmos: $650 \mathrm{H}_{\delta} \mathrm{S}$ and 50 PSB ($0.5<\mathrm{z}<1.0$ and $\mathrm{M}_{\mathrm{B}} \leq-20$)
- PSB galaxies:
- massive objects (nearly as early-type gafaxies)
- Carge 4000 Balmer Greak and mostly red colours
- fitted witiri a population of young (1Gyr) pfus ofd (13Gyr) stars
- More numerous at Lower z
- No clear dependence of galaxy density on environment

Vergani $+z$ Cosmos team

Morpinological classification from ACS images for 2783 galaxies $446 \mathrm{H}_{\delta} \mathrm{S}$ and 27 PSB

- occurrence of early-type, Catetype and irregular galaxies in the
 $\mathrm{H}_{\delta} \mathrm{S}$ galaxies mimics tite one of the entire sample
- PSB sitow an opposite Geinavior witit a larger fraction of objects classified as early-type
mec̆inanisms wǐicín
stopped tine SF act on
tine morpinology too, on
Morpíological type
sǐort time scale

VVDS: ENVIRONMENT, MASS SEGREGATION, AND GALAXY PROPERTIES

- Galaxy properties depend on mass
- More massive galaxies are redder
- Galaxy properties depend on environment
- Galaxies in densest environments are redder

What is the driving parameter?
Divide galaxies according to their environmental density, Look at their mass distribution

Scodeggio + VVDS team

: ENVIRONMENT, MASS SEGREGATION, AND GALAXY PROPERTIES

Galaxies in denser environments are more massive

Different color distribution according to environment

Difference disappears once we divide galaxies by mass

Environment affects Mass, mass affects tĥe otiher properties

COSMIC VARIANCE

- VVDS Wide survey: 4 fields widely separated on sky
- ~50000 spectra (first 30000 released... now)
- Cosmic Variance

Garilfi + VVDS team

A LOOK IN THE FUTURE

- Current projects will keep us busy for a few years to come (VNDS follow-ups, zCosmos, VO, Fase)
- In tine Conger term:
- SPACE?
- ELT survey instrument?

PROBLEMS

- Clear perspective for PostDocs (Firing plan)
- More Píd students
- Clear and reliable financing process

