

COSMOSURVEYS AND ASTROSOFTWARE

Overview of group activities

SCIENTIFIC GOAL

- From the primordial uniform broth, to the current multifarious Universe. HOW?
- We know the physical mechanisms (?), what is the sequence of the events? What are the time scales?
- Follow observational characteristics through cosmic time.
 - Track evolution versus Environment, Luminosity, galaxy Type.
 - Have statistically significant numbers per craracteristic and redshift bin....
 - Big numbers are needed (fundreds of thousands objects)

Cosmological Surveys

Now possible, thanks to larger telescopes, more powerful instruments

TECHNOLOGICAL GOAL

- Hundreds of thousands of objects
- Impossible manual object by object approach
- Reduction pipelines, analysis tools, databases are needed.

<u> Astronomical Software</u>

• Marriage between Cosmological Surveys and Astronomical Software is natural

- Scientists
 - D.Maccagni
 - + M.Polletta
 - P.Memeo
 - D.Vergani
- + the VVDS and zCosmos teams

- D.Bottini
- L. Chiappetti
- P.Franzetti
- B. Garilli
- M.Scodeggio

- Software developers
 - M.Fumana
 - L.Paioro
- + the VO and ADASS community

Red: postDocs

Blue: PhD student

THE MAIN INTERESTS/ACTIVITIES

- VVDS
 - Ultra Deep
 - Dynamics
 - Mass Assembly
 - Large Scale Structure
 - •Star Formation History
 - DB quality control
 - XMM-LSS
 - DataBase
 - Optical crossidentification
 - AGN SED fitting

- zCosmos
 - Mass Assembly
 - Large Scale Structure
 - Transition Objects
 - Dynamics
 - E+A galaxies
 - Software
 - Data reduction (vipgi)
 - Redshift measurement (EZ)
 - •SED fitting (gossip)
 - DataBase access (dart)
 - Virtual Observatory
 - Future Astronomical S/w Environment

- Miscellanea
 - \bullet SPACE
 - ALFALFA
 - Virgo cluster
 - Dust absorption

- Very recent (< 3 months)
- Work in progress
- IASF-MI centered
 - 1. Software: EZ redshift measurement
 - 2. zCosmos: morphology of Star Burst galaxies
 - 3. VVDS: mass vs. Environment
 - 4. VVDS-Wide: cosmic variance

NEW EZ DEVELOPMENTS

EZ (Easy Redshifts): Tool to AUTOMATICALLY measure redshifts from 1D spectra. World wide available since 1 year Benchmark on 10000 spectra (2005)

• Ran EZ TOTALLY blindly

• compared with "manually obtained" redshifts (assumed to be true)

Success rate: GLOBAL 75%

>90% Secure 92.5%

Redshift reliability: automatically assigns a "reliability"

flag to each redshift

Benchmark on 22500 spectra

NOT A MATTER OF "CHANGING THRESHOLD" NEED MORE WORK

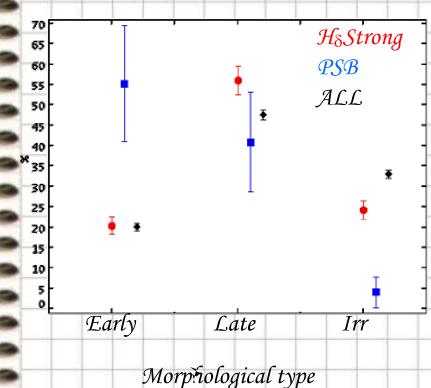
EZ flag	Aim	Result
НІСН	95%	96%
Medium	75%	71%
LOW	50%	34%

Fumana + Pandora team

ZCOSMOS. POSTSTARBURST GALAXIES

- H_δS galaxies have recently undergone some star forming episode
 - Hdelta absorption traces recent (less than 2 Gyr) star formation.
- **PSB** galaxies have suddenly stopped forming stars (no [OII] emission).
- PSB and H_oS to constrain the star formation history of galaxies
 - Yow it is activated and why it stops.
- Gemini deep deep: 26 H_oS and 1-2 PSB galaxies.
- $zCosmos: 650 \text{ H}_{\delta}S$ and 50 PSB (0.5<z<1.0 and $M_{B} \le -20$)

• PSB galaxies:


- massive objects (nearly as early-type galaxies)
- large 4000 Balmer break and mostly red colours
- fitted with a population of young (1Gyr) plus old (13Gyr) stars
- More numerous at lower z
- No clear dependence of galaxy density on environment

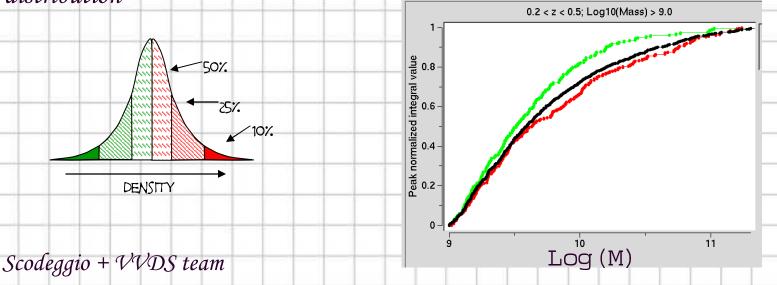
Vergani + zCosmos team

ZCOSMOS NEW: MORPHOLOGY

Morphological classification from ACS images for 2783 galaxies

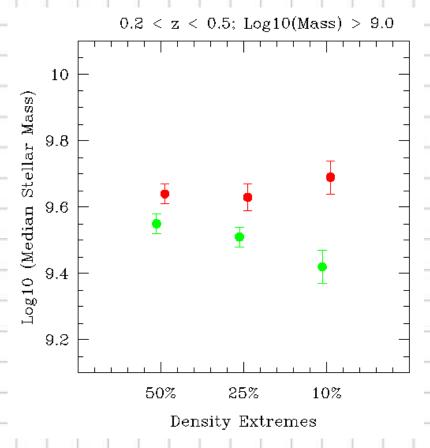
 $446\,\mathrm{H}_{\mathrm{\delta}}\mathrm{S}$ and $27\,\mathrm{PSB}$

- occurrence of early-type, latetype and irregular galaxies in the $\mathbf{H}_{\delta}\mathbf{S}$ galaxies mimics the one of the entire sample
- PSB show an opposite behavior with a larger fraction of objects classified as early-type


mechanisms which stopped the SF act on the morphology too, on short time scale

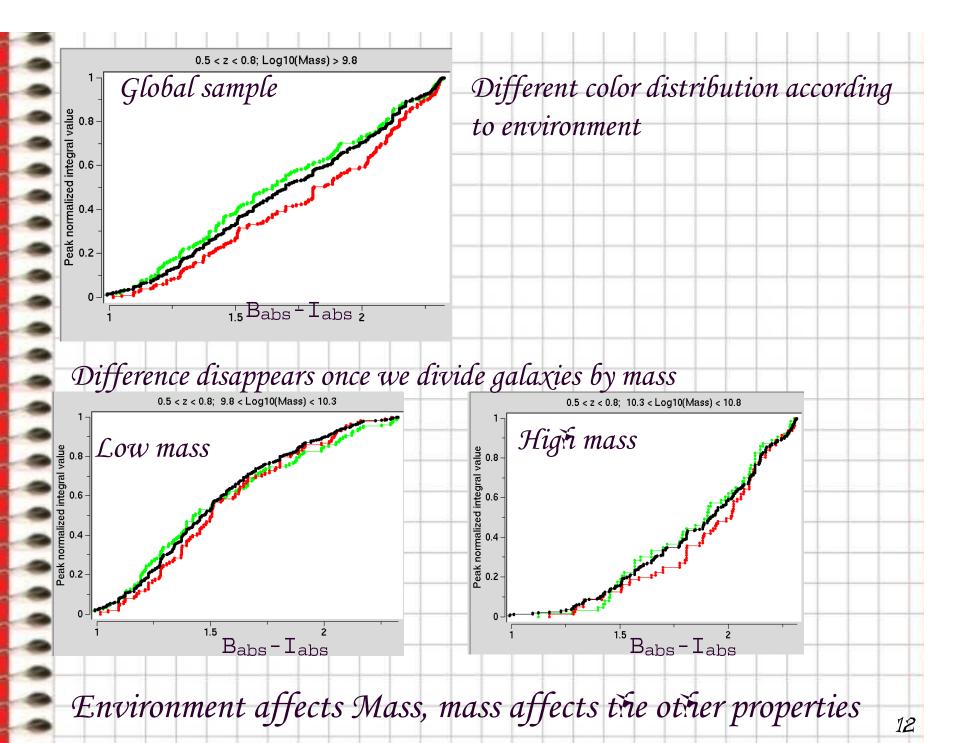
VVDS: ENVIRONMENT, MASS SEGREGATION, AND GALAX PROPERTIES Galaxy properties depend on mass

- - More massive galaxies are redder
- Galaxy properties depend on environment
 - Galaxies in densest environments are redder

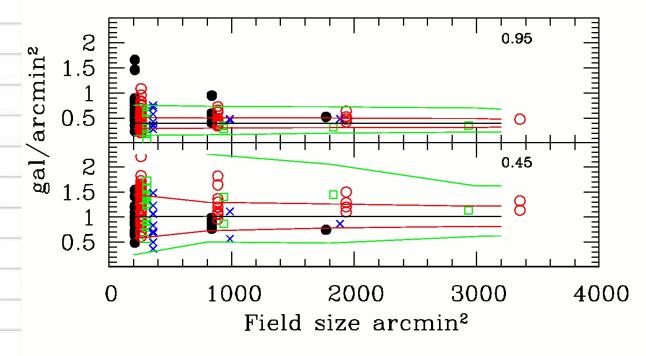

What is the driving parameter?

Divide galaxies according to their environmental density, look at their mass distribution

10


ENVIRONMENT, MASS SEGREGATION, AND GALAXY PROPERTIES

Galaxies in denser environments are more massive


Median galaxy mass per density range

Scodeggio + VVDS team

COSMIC VARIANCE

- VVDS Wide survey: 4 fields widely separated on sky
- ~50000 spectra (first 30000 released... now)
- Cosmic Variance

Garilli + VVDS team

A LOOK IN THE FUTURE Current projects will keep us busy for a few years to

- Current projects will keep us busy for a few years to come (VVDS follow-ups, zCosmos, VO, Fase)
- In the longer term:
 - SPACE?
 - ELT survey instrument?
 - •

PROBLEMS

- Clear perspective for PostDocs (Firing plan)
- More PhD students
- Clear and reliable financing process