studying the high-z Universe: a review of my scientific activity

by Ruben Salvaterra

geography

geography

before the degree thesis

before the degree thesis

CMB spectral distortion

potentially allow us to study the Universe up to $z \sim 10^5$

but see ARCADE ballon (Fixsen et al. 2011) & PIXIE satellite (Kogut et al. 2011)

RS & Burigana 2002, Burigana & RS 2003

the "dark ages"

the cosmic dark ages

possible signature of first galaxies in the NIBR (RS & Ferrara 2003, 2006, Magliochetti et al. 2003, RS et al. 2006)

transition I: cosmic reionization

many open questions:

- when did the reionization happen?
- what are the main sources of ionizing photons?
- what is the relative contribution of PopIII/PopII stars?
- what are the feedback effect at play?

credits: B. Ciardi

L - 14

transition II: from PopIII to PopII

 $10^{-2}M_{\odot}$ 10^{4} $10^{2}M$ 1 M_☉. 1000 10-4M_o massive stars for 100 Z<10⁻⁶ Zsun 10 $(0 Z_{\odot})$ (10⁻⁸Z_o (10⁻⁴Z_☉ (10⁻²Z_o) $(1 Z_{\odot})$ 5 10 15 20 0 $\log(n_{H}[cm^{-3}])$

~1 Msun stars for Z>10⁻⁴ Zsun

there exists a critical metallicity governing the PopIII-PopII transition

Schneider et al. 2002, 2003

'Christlieb' star and the effect of dust

Christileb et al. (2002) reported the detection of HE0107-5240 with M=0.8 Msun and [Fe/H]=-5.3

Schneider, Ferrara, RS et al., 2003, Nature

'Christlieb' star and the effect of dust

Christileb et al. (2002) reported the detection of HE0107-5240 with M=0.8 Msun and [Fe/H]=-5.3

Schneider, Ferrara, RS et al., 2003, Nature

alternative explanation

 $D_{\text{trans}} = Log(10^{[C/H]} + 0.3 \ 10^{[O/H]}) \ge -3.5$

alternative explanation

the chemical feedback

note the recent observation of two gas clouds at $z\sim3$ with Z<10⁻⁴ Zsun (Fumagalli et al. 2011 Science)

Schneider, RS et al. 2006, Tornatore et al. 2007

2

4

 $x [h^{-1} \text{Mpc}]$

6

10

simulating the high-z galaxies

simulating the high-z galaxies

gamma-ray bursts

gamma-ray bursts

GRBs are strong burst in the gamma-rays

long GRBs are thought to be linked to the death of massive stars: i.e. the SN explosion of Wolfe-Rayet stars (SN I b/c), as observed is some cases

main activity: GRB luminosity function and its evolution with redshift & estimate of the number of high-z GRBs RS & Chincarini 2007, RS et al. 2007, 2009, Campisi et al. 2011

grb 090423

see also VLT obs by Tanvir et al. 2009

GRBs do exist at those early epochs (and are detectable!)
similar to lower-z GRBs

RS et al. 2009 Nature

still the most distant spectr. object!

no detection in 5 h with VLT/Xshooter 11 h with Subaru/MOIRCS

Bunker et al. in prep.

grb as a tool

up-to-now 4 GRBs have been detected at z>6: 050904 (z=6.3), 080913 (z=6.7), 090423 (z=8.2) & 090429B (z=9.4)

An incomplete list

- ISM metals and dust
- identify and study galaxies responsable of the reionization
- measuring the SFRD
- reionization
- direct detection of PopIII stars
- enrichment by PISN: indirect PopIII detection
- probe the intergalactic radiation field
- escape fraction

•

• constraints on DM

see EXIST white paper: McQuinn et al. 2010

Jakobsson et al. (2004) provides some criteria to select GRBs with favorable observing condition from ground: \Box XRT position with 12h \Box low Galactic extinction: A_V<0.5 \Box declination: -70°< δ <+70° \Box distant from Sun: θ >55° none of these should shape the z-dist

Salvaterra et al. 2012

Salvaterra et al. 2012

introduces a bias the z-dist. *in a controlled way*

Salvaterra et al. 2012

without z

with z

z limits

BAT₆ redshift distribution

in spite of the severe cut in photon flux the mean (median) redshift is 1.82 ± 0.14 (1.62 ± 0.10) and the distribution extend at least up to z=5.47

Salvaterra et al. 2012

dark burst population Melandri et al. 2012

X-ray absorption Campana et al. 2012

conclusion II

unusual properties of the Christmas burst (aka GRB 101225A) as due to a minor body (a comet!) falling onto a NS in the Perseus arm

Campana et al. 2011 Nature

future prospects

future prospects

Lunar LOFAR: HI tomography at the epoch of reionization

high-z AGN and the unresolved

Volonteri. Haardt & Madau 2003

seed ~600 Msun Eddigton limited e=0.12 for $10^{9.5}$ Msun at z=6

high-z AGN contribute up to 25% of the unresolved XRB (5% of the total XRB) mostly from $M < 10^6$ Msun BHs and from sources at z > 8-93-4% of the total XRB will remain unresolved even after a survey 10x deeper than CDFN

high-z AGN and the unresolved

Volonteri. Haardt & Madau 2003

seed ~600 Msun Eddigton limited e=0.12 for $10^{9.5}$ Msun at z=6

high-z AGN contribute up to 25% of the unresolved XRB (5% of the total XRB) mostly from $M < 10^6$ Msun BHs and from sources at z > 8-93-4% of the total XRB will remain unresolved even after a survey 10x deeper than CDFN

high-z AGN and the unresolved

Volonteri, Haardt & Madau 2003

seed ~600 Msun Eddigton limited e=0.12 for $10^{9.5}$ Msun at z=6

alternative models (super-Edd or massive seeds) seem to overpredict the XRB

high-z AGN contribute up to 25% of the unresolved XRB (5% of the total XRB) mostly from $M < 10^6$ Msun BHs and from sources at z > 8-93-4% of the total XRB will remain unresolved even after a survey 10x deeper than CDFN