

Istituto Nazionale di Astrofisica . Osservatorio Astronomico di Brera

Short Gamma-Ray Bursts punto della situazione e prospettive

Paolo D'Avanzo

INAF - Osservatorio Astronomico di Brera

What is a Gamma-Ray Burst?

Brief, sudden, intense flash of gamma-ray radiation

What is a Gamma-Ray Burst?

Brief, sudden, intense flash of gamma-ray radiation

GRBs are cosmological and occur in galaxies

Two flavors of GRBs

Short/hard GRBs

• in all type of galaxies (or no host galaxy at all)

Progenitors

- older stellar population
- no associated SN
- merger progenitor model (and/or magnetars?)

Long/soft GRBs •in star-forming galaxies

- younger stellar population
- many with associated SN
- collapsar progenitor model (magnetar engine?)

The standard model

The standard model

The standard model

- Burst Alert Telescope (BAT)
 - 15-150 keV
 - FOV: 2 steradiants
 - Centroid accuracy: 1' 4'
- X-Ray Telescope (XRT)
 - 0.2-10.0 keV
 - FOV: 23.6' x 23.6'
 - Centroid accuracy: 5"
- UV/Optical Telescope (UVOT)
 - 30 cm telescope
 - 6 filters (170 nm 600 nm)
 - FOV: 17' x 17'
 - 24th mag sensitivity (1000 sec)
 - Centroid accuracy: 0.5"

BAT Burst Image

T<10 s; θ < 4'

XRT Image

T<100 s; θ < 5"

T<300 s; θ < 0.5''

pre-Swift afterglow light curves

pre-Swift afterglow light curves

Swift afterglow light curves

Swift afterglow light curves

Steep decay, plateaus, flares: common to long and short GRB afterglow light curves

Short GRB & NO Supernovae

GRB 050509B

GRB 071227

See also: Covino et al. 2006; Della Valle et al. 2006; Fynbo et al. 2006

Short vs. long GRBs: the prompt emission

GRB spectra can be described by a smoothly broken power law, characterized by a peak energy

Amati et al. 2002; Younetoku et al. 2004; Ghirlanda et al. 2009, Zhang et al. 2012, D'Avanzo et al. in 2014

Short vs. long GRBs: the prompt emission

Amati et al. 2002; Younetoku et al. 2004; Ghirlanda et al. 2009, Zhang et al. 2012, D'Avanzo et al. in 2014

Short vs. long GRBs: the afterglow emission

- less dense environment?
- less energetic?

Short vs. long GRBs: the afterglow emission

Rest frame X-ray luminosity normalized to Eiso

The afterglow X-ray luminosity is a good proxy of Eiso for both long and short GRBs

Long GRB hosts

- kicked progenitor?

Barthelmy et al. 2005; Malesani et al. 2007

D'Avanzo et al. 2009

The progenitors of short GRBs

Most popular model:

Coalescence (merging) of a compact object binary system (NS-NS ; NS-BH)

While orbiting, the two objects emit gravitational waves losing energy: MERGING

NS-NS systems are observed in our Galaxy:

The progenitors of short GRBs

Most popular model:

Coalescence (merging) of a compact object binary system (NS-NS ; NS-BH)

While orbiting, the two objects emit gravitational waves losing energy: MERGING

- critical parameter: merging time t_m Time between the formation of the system and its coalescence $t_m \propto a^4$ (a: system separation) -> ~10 Myr < t_m < ~10 Gyr

- merging can occur in old and young stellar populations

- kick velocities:

Compact objects are the remnants of core-collapse SNe, that can give a "kick"

The system can escape from the HG-> OFFSET! $(1 \div 100 \text{ kpc})$ /low density CBM

(Belczynski & Kalogera 2001; Perna & Belczynski 2002; Belczynski et al. 2006)

inordi "

The progenitors of short GRBs

Most popular model:

Coalescence (merging) of a compact object binary system (NS-NS; NS-BH)

While orbiting, the two objects emit gravitational waves losing energy: MERGING

Another possibility: dynamical formation of a double compact object system (e.g. in globular clusters)

OFFSET/low density CBM

Short GRBs: Offsets

Short GRBs: Offsets

Offset normalized to HG eff. radius

Fong & Berger 2013

Short GRB redshift distribution

have a z distribution peaking at $z \ge 0.8$. (Salvaterra et al. 2008).

Redshift distribution

Rate of bursts with peak flux $P_1 < P < P_2$

$$\frac{dN}{dt}(P_1 < P < P_2) = \int_0^\infty dz \frac{dV(z)}{dz} \frac{\Delta\Omega_s}{4\pi} \frac{k_{\rm SGRB}\Psi_{\rm SGRB}(z)}{1+z}$$
$$\times \int_{L(P_1,z)}^{L(P_2,z)} dL'\phi(L'), \qquad (5)$$

Formation rate (# of bursts per unit time and unit comoving volume at redshift z) proportional to massive star binary formation rate and the delay time (interval between binary formation and merging) distribution function:

 $f_{\rm F}(t) \propto t^n$

We compute the observed distribution of SGRBs for n = -1.5, -1, -0.5, delay times ranging from 20 Myr to ~10 Gyr (Behroozi, Ramirez-Ruiz & Fryer 2014)

Model with n=-1.5 favored in accounting for the observed z distribution of the SGRBs of our sample. Consistent with fast merging primordial binaries progenitors

Intrinsic X-ray absorbing column density of SGRBs

 N_H distribution of our complete sample of short GRB (0.12 < z < 1.30)

 N_H distribution of the BAT6 sample of bright long GRB presented in Campana et al. (2013), reduced to z < 1.3

K-S test -> P=34% in agreement with Kopac et al. (2012); Margutti et al. (2013)

Intrinsic X-ray absorbing column density of SGRBs

Fast merging "primordial" binaries are expected to merge near their starforming birthplace (the environment for long and short GRBs may be similar in this case). However, the intrinsic X-ray N_H might be a good proxy of the GRB host galaxy global properties but <u>not</u> for the specific properties of the circumburst medium.

Intrinsic X-ray absorbing column density of SGRBs

25% of the events of the sample have either a deep upper limit on the intrinsic N_H or are "<u>hostless</u>" SGRBs. This can hint for bursts occurred in low-density environments, originated by progenitors kicked out from their HG (e.g. primordial binaries with long coalescing times) or sited in outlying globular clusters (e.g. binaries formed via dynamically capture)

A Kilonova associated to GRB 130603B?

Tanvir et al. 2013 Berger et al. 2013 (but see also Jin et al. 2014)

Photometric evidence ("red excess", HST data) of a possible KN associated to GRB 060614 has been also recently reported by Yang et al. (arXiv:1503.07761)

A Kilonova associated to GRB 060614 & GRB 050709?

Yang et al. 2015

Jin et al., submitted, arXiv: 1603.07869

Jets in SGRBs

Rosswog 2012

Metzger & Berger 2012

Evidences for jet break in SGRB light curves

Short GRB Opening Angles

GRB	Band ^a	θ_j (deg)	$\delta t^b_{\rm last}$ (days)	Reference
050709	0	$\gtrsim 15^{\circ}$	16.2	1
050724A	Х	$\gtrsim 25^{\circ}$	22.0	2
051221A	Х	6-7°	26.6	3
090426A	0	$5 - 7^{\circ}$	2.7	4
101219A	Х	$\gtrsim 4^{\circ}$	3.9	5, This work
111020A	Х	3-8°	10.2	6
111117A	Х	$\gtrsim 3-10^{\circ}$	3.0	7,8
120804A	Х	$\gtrsim 13^{\circ}$	45.9	9, This work
130603B	OR	$4 - 8^{\circ}$	6.5	10
140903A	Х	$\gtrsim 6^{\circ}$	3.0	11, This work
140930B	Х	\gtrsim 9°	23.1	This work

Fong et al. 2015

The SGRBs rate (and GW EM counterpart search)

Short GRBs as GW sources

PRL 116, 061102 (2016)

Selected for a Viewpoint in Physics PHYSICAL REVIEW LETTERS

week ending 12 FEBRUARY 2016

Ş

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration) (Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10^{-21} . It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1σ . The source lies at a luminosity distance of 410^{+160}_{-180} Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4}M_{\odot}$ and $29^{+4}_{-4}M_{\odot}$, and the final black hole mass is $62^{+4}_{-4}M_{\odot}$, with $3.0^{+0.5}_{-0.5}M_{\odot}c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

DOI: 10.1103/PhysRevLett.116.061102

Abbott et al. 2016a

Abbott et al. 2016a

Primary black hole mass	$36^{+5}_{-4}M_{\odot}$
Secondary black hole mass	$29^{+4}_{-4} M_{\odot}$
Final black hole mass	$62^{+4}_{-4} M_{\odot}$
Final black hole spin	$0.67^{+0.05}_{-0.07}$
Luminosity distance	410 ⁺¹⁶⁰ ₋₁₈₀ Mpc
Source redshift z	$0.09^{+0.03}_{-0.04}$

Abbott et al. 2016a

Strategy: observe only galaxies with D < 200 Mpc within the search area

X-ray (Swift/XRT) N fields with short (50-500s) exposures 600 fields, 500s each (~4 days) give a 20-30% probability of detecting a SGRB afterglow (Evans et al. 2015). Few contaminants.

Optical/NIR

One week observations with large FoV (2-3 deg²) instruments down to i~24, z~23 mag can give a 95% kilonova detection rate. However, hundreds of contaminats (Cowperthwaite & Berger 2015)

Abbott et al. 2016b

	Area Contained probability (%)					ty (%)					
Instrument	Band ^a	Depth ^b	Time ^c	(deg ²)	cWB	LIB	BSTR.	LALInf.	GCN		
			Gamma-ra	ау							
Fermi LAT	20 MeV-300 GeV	1.7×10^{-9}	(every 3 hr)	_	100	100	100	100	18709		
Fermi GBM	8 keV-40 MeV	$0.7-5 \times 10^{-7}$ (0.1-1 MeV)	(archival)	_	100	100	100	100	18339		
INTEGRAL	75 keV-1 MeV	1.3×10^{-7}	(archival)	_	100	100	100	100	18354		
IPN	15 keV-10 MeV	1×10^{-9}	(archival)	_	100	100	100	100	—		
X-ray											
MAXI/GSC	2-20 keV	1×10^{-9}	(archival)	17900	95	89	92	84	19013		
Swift XRT	0.3-10 keV	5×10^{-13} (gal.)	2.3. 1. 1	0.6	0.03	0.18	0.04	0.05	18331		
		$2-4 \times 10^{-12}$ (LMC)	3.4, 1, 1	4.1	1.2	1.9	0.16	0.26	18346		
			Optical								
DECam	<i>i.z</i>	i < 22.5, z < 21.5	3.9, 5, 22	100	38	14	14	11	18344, 18350		
iPTF	R	R < 20.4	3.1, 3, 1	140	3.1	2.9	0.0	0.2	18337		
KWFC	i	i < 18.8	3.4, 1, 1	24	0.0	1.2	0.0	0.1	18361		
MASTER	С	< 19.9	-1.1, 7, 7	590	56	35	55	49	18333, 18390, 18903, 19021		
Pan-STARRS1	i	i < 19.2 - 20.8	3.2, 21, 42	430	28	29	2.0	4.2	18335, 18343, 18362, 18394		
La Silla-QUEST	g, r	r < 21	3.8, 5, 0.1	80	23	16	6.2	5.7	18347		
SkyMapper	i, v	i < 19.1, v < 17.1	2.4, 2, 3	30	9.1	7.9	1.5	1.9	18349		
Swift UVOT	u	u < 19.8 (gal.)	2.3, 1, 1	3	0.7	1.0	0.1	0.1	18331		
	u	u < 18.8 (LMC)	3.4, 1, 1						18346		
TAROT	С	R < 18	2.8, 5, 14	30	15	3.5	1.6	1.9	18332, 18348		
TOROS	С	r < 21	2.5, 7, 90	0.6	0.03	0.0	0.0	0.0	18338		
VST	r	r < 22.4	2.9, 6, 50	90	29	10	14	10	18336, 18397		
			Near Infra	red							
VISTA	Y, J, K_S	J < 20.7	4.8, 1, 7	70	15	6.4	10	8.0	18353		
			Radio								
ASKAP	863.5 MHz	5–15 mJy	7.5, 2, 6	270	82	28	44	27	18363, 18655		
LOFAR	145 MHz	12.5 mJy	6.8, 3, 90	100	27	1.3	0.0	0.1	18364, 18424, 18690		
MWA	118 MHz	200 mJy	3.5, 2, 8	2800	97	72	86	86	18345		

Table 2. Summary of Tiled Observations

^aBand: photon energy, optical or near-infrared filter (or C for clear, unfiltered light), wavelength range, or central frequency

^b Depth: gamma/X-ray limiting flux in erg cm⁻² s⁻¹; 5σ optical/IR limiting magnitude (AB); and 5σ radio limiting spectral flux density in mJy. The reported values correspond to the faintest flux/magnitude of detectable sources in the images.

^c Elapsed time in days between start of observations and the time of GW150914 (2015 September 14 09:50:45), number of repeated observations

Abbott et al. 2016b^{of the same area. total observation period in days}

What if the GW source is a BH-BH binary???

Fermi GBM Observations of LIGO Gravitational Wave event GW150914

V. Connaughton^{*,1}, E. Burns², A. Goldstein^{+,3}, M. S. Briggs⁴, B.-B. Zhang⁵ C. M. Hui³, P. Jenke⁵, J. Racusin⁶, C. A. Wilson-Hodge³, P. N. Bhat⁵, E. Bissaldi⁷, W. Cleveland¹,
G. Fitzpatrick⁵, M. M. Giles⁸, M. H. Gibby⁸, J. Greiner⁹, A. von Kienlin⁹, R. M. Kippen¹⁰,
S. McBreen¹¹, B. Mailyan⁵, C. A. Meegan⁵, W. S. Paciesas¹, R. D. Preece⁴, O. Roberts¹⁰, L. Sparke¹², M. Stanbro², K. Toelge⁹, P. Veres⁵, H.-F. Yu^{9,13}

and other authors

ABSTRACT

With an instantaneous view of 70% of the sky, the *Fermi* Gamma-ray Burst Monitor (GBM) is an excellent partner in the search for electromagnetic counterparts to gravitational wave (GW) events. GBM observations at the time of the Laser Interferometer Gravitational-wave Observatory (LIGO) event GW150914 reveal the presence of a weak transient source above 50 keV, 0.4 s after the GW event was detected, with a false alarm probability of 0.0022. This weak transient lasting 1 s does not appear connected with other previously known astrophysical, solar, terrestrial, or magnetospheric activity. Its localization is ill-constrained but consistent with the direction of GW150914. The duration and spectrum of the transient event suggest it is a weak short Gamma-Ray Burst arriving at a large angle to the direction in which *Fermi* was pointing, where the GBM

NTEGRAL UPPER LIMITS ON GAMMA-RAY EMISSION ASSOCIATED WITH THE GRAVITATIONAL WAVE EVENT GW150914

V. SAVCHENKO¹, C. FERRIGNO², S. MEREGHETTI³, L. NATALUCCI⁴, A. BAZZANO⁴, E. BOZZO², S. BRANDT⁵,
 T. J.-L. COURVOISIER², R. DIEHL⁶, L. HANLON⁷, A. VON KIENLIN⁶, E. KUULKERS⁸, P. LAURENT^{9,10}, F. LEBRUN⁹,
 J. P. ROQUES¹¹, P. UBERTINI⁴, G. WEIDENSPOINTNER^{6,12}
 ¹François Arago Centre, APC, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris,
 Sorbonne Paris Cité, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
 ²ISDC, Department of astronomy, University of Geneva, chemin d'Écogia, 16 CH-1290 Versoix, Switzerland
 ³INAF, IASF-Milano, via E. Bassini 15, L²0133 Milano, Italy
 ⁴INAF-Institute for Space Astrophysics and Planetology, Via Fosso del Cavaliere 100, 00133-Rome, Italy
 ⁵DTU Space - National Space Institute Elektrovej - Building 327 DK-2800 Kongens Lyngby Denmark
 ⁶Max-Planck-Institut für Extraterrestrische Physik, Garching, Germany
 ⁷Space Science Group, School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
 ⁸European Space Astronomy Centre (ESA/ESAC), Science Operations Department 28691, Villanueva de la Cañada, Madrid, Spain
 ⁹APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10 rue Alice Domont et Léonie Duquet, 75205 Paris Cedex 13, France.
 ¹⁰DSM/Irfu/Service d'Astrophysique, Bat. 709 Orme des Merisiers CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
 ¹¹Université Toulouse; UPS-OMP; CNRS; IRAP; 9 Av. Roche, BP 44346, F-31028 Toulouse, France
 ¹²European XFEL GmbH, Albert-Einstein-Ring 19, 22761, Hamburg, Germany

Draft version March 8, 2016

ABSTRACT

Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we put upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event GW150914, discovered by the LIGO/Virgo collaboration. The omni-directional view of the INTEGRAL/SPI-ACS has allowed us to constrain the fraction of energy emitted in the hard X-ray electromagnetic component for the full high-probability sky region of LIGO trigger. Our upper limits on the hard X-ray fluence at the time of the event range from $F_{\gamma} = 2 \times 10^{-8}$ erg cm⁻² to $F_{\gamma} = 10^{-6}$ erg cm⁻² in the 75 keV - 2 MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy $E_{\gamma}/E_{\rm GW} < 10^{-6}$. We discuss the implication of gamma-ray limits on the characteristics of the gravitational wave source, based on the available predictions for prompt electromagnetic emission.

What if the GW source is a BH-BH binary???

SHORT GAMMA-RAY BURSTS FROM THE MERGER OF TWO BLACK HOLES

ROSALBA PERNA¹, DAVIDE LAZZATI², BRUNO GIACOMAZZO^{3,4} ¹Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA ² Department of Physics, Oregon State University, 301 Weniger Hall, Corvallis, OR 97331, USA ³ Physics Department, University of Trento, via Sommarive 14, I-38123 Trento, Italy and ⁴ INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, via Sommarive 14, I-38123 Trento, Italy *Draft version February 17, 2016*

ABSTRACT

Short Gamma-Ray Bursts (GRBs) are explosions of cosmic origins believed to be associated with the merger of two compact objects, either two neutron stars, or a neutron star and a black hole. The presence of at least one neutron star has long been thought to be an essential element of the model: its tidal disruption provides the needed baryonic material whose rapid accretion onto the post-merger black hole powers the burst. The recent tentative detection by the *Fermi* satellite of a short GRB in association with the gravitational wave signal GW150914 produced by the merger of two black holes has shaken this standard paradigm. Here we show that the evolution of two high-mass, low-metallicity stars with main sequence rotational speeds a few tens of percent of the critical speed eventually undergoing a weak supernova explosion *can* produce a short gamma-ray burst. The outer layers of the envelope of the last exploding star remain bound and circularize at large radii. With time, the disk cools and becomes neutral, suppressing the magneto-rotational instability, and hence the viscosity. The disk remains 'long-lived dead' until tidal torques and shocks during the pre-merger phase heat it up and re-ignite accretion, rapidly consuming the disk and powering the short gamma-ray burst.

Subject headings: gamma rays: bursts - accretion, accretion disks - gravitational waves - stars: black holes

POSSIBLE SHORT GAMMA-RAY BURSTS ASSOCIATED WITH BLACK HOLE - BLACK HOLE MERGERS

BING ZHANG Department of Physics and Astronomy, University of Nevada Las Vegas, NV 89154, USA

ABSTRACT

The discovery of GW 150914 suggests that double black hole (BH-BH) mergers are common in the universe. If at least one of the two merging black holes carries a small amount of charge, the inspiral of the BH-BH system would drive a magnetic dipole normal to the orbital plane. A magnetosphere would be developed, and the system would behave like a giant pulsar with increasing wind power. If the BH charge can be as large as a factor of $\hat{q} \sim 10^{-15}$ of the critical charge Q_c of the BH, a detectable short-duration GRB would be generated right before the final coalescence. The GRB is supposed to have a short duration, nearly isotropic emission, and a delay with respect to the gravitational wave chirp signal. The putative short GRB coincident with GW 150914 detected with Fermi GBM can be interpreted with this model. The detections or non-detections of such GRBs associated with future BH-BH merger gravitational wave sources would lead to constraints on the charges carried by isolate black holes.

ELECTROMAGNETIC COUNTERPARTS TO BLACK HOLE MERGERS DETECTED BY LIGO

Abraham Loeb¹

Draft version February 16, 2016

ABSTRACT

Mergers of stellar-mass black holes (BHs), such as GW150914 observed by LIGO, are not expected to have electromagnetic counterparts. However, the Fermi GBM detector identified of a γ -ray transient 0.4 s after the gravitational wave (GW) signal GW150914 with consistent sky localization. I show that the two signals might be related if the BH binary detected by LIGO originated from two clumps in a dumbbell configuration that formed when the core of a rapidly rotating massive star collapsed. In that case, the BH binary merger was followed by a γ -ray burst (GRB) from a jet that originated in the accretion flow around the remnant BH. A future detection of a GRB afterglow could be used to determine the redshift and precise localization of the source. A population of standard GW sirens with GRB redshifts would provide a new approach for precise measurements of cosmological distances as a function of redshift.

Modeling the Afterglow of GW150914-GBM

Brian J. Morsony^{1*}, Jared C. Workman², Dominic M. Ryan³

¹ Department of Astronomy, University of Maryland, 1113 Physical Sciences Complex, College Park, MD, 20742-2421, USA ² Dept. of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO, 48101, USA ³ Dept. of Astronomy, University of California, Berkeley, 501 Campdell Hall #4,111, Berkeley, CA, 49720-4,311, USA

18 February 2016

ABSTRACT

We model the afterglow of the *Fermi* GBM event associated with LIGO detection GW150914, under the assumption that the gamma-ray are produced by a short GRB-like relativistic outflow. We model GW150914-GBM as both a weak, on-axis short GRB and normal short GRB seen far off axis. Given the large uncertainty in the position of GW150914, we determine that the best chance of finding the afterglow is with the MWA, with the flux from an off-axis short GRB reaching 0.1 - 10 mJy at 150 MHz by 1 - 12 months after the initial event. At low frequencies, the source would evolve from a hard to soft spectrum over several months. The radio afterglow may still be detectable and increasing in brightness **NOW**. With a localization from the MWA, the afterglow would be detectable at higher radio frequencies with the ATCA and in X-rays *Chandra* or XMM.

Electromagnetic Afterglows Associated with Gamma-Ray Emission Coincident with Binary Black Hole Merger Event GW150914

Ryo Yamazaki¹, Katsuaki Asano², Yutaka Ohira¹

¹Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara 252-5258, Japan ²Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha,

Kashiwa, Chiba 277-8582, Japan

ABSTRACT

Fermi Gamma-ray Burst Monitor detected gamma-ray emission 0.4 sec after a binary black-hole merger event, GW150914. We show that the gamma-ray emission is caused by a relativistic outflow with Lorentz factor larger than 10. Subsequently debris outflow pushes ambient gas to form a shock, which is responsible for the afterglow synchrotron emission. We find that the fluxes of radio and optical afterglows increase from about 10^7 sec to at least ~ 10 yr after the burst trigger. Further follow-up observations in the radio and optical/infrared bands are encouraged. Detection of afterglows will localize the sky position of the gravitational-wave and the gamma-ray emissions and it will support the physical association between them.

What if the GW source is a BH-BH binary???

Pan-STARRS and PESSTO search for the optical counterpart to the LIGO gravitational wave source **GW150914** Smartt et al. 2016

ABSTRACT

We have searched for an optical counterpart to the first gravitational wave source discovered by the LIGO experiment, GW150914, using a combination of the Pan-STARRS1 wide-field telescope and the PESSTO spectroscopic follow-up programme. We we mapped out 442 square degrees of the northern sky region of the initial map. We discovered 56 astrophysical transients over a period of 41 days from the discovery of the source. Of these, 19 were spectroscopically classified and a further 13 have host galaxy redshifts. All transients appear to be fairly normal supernovae and AGN variability and none is obviously linked with GW150914. We find one high energy type II supernova with an estimated explosion date consistent with that of GW150914. but no causal link can be inferred. We quantify the upper limits by defining parameterised lightcurves with timescales of 4, 20 and 40 days and use the sensitivity A DARK ENERGY CAMERA SEARCH FOR AN OPTICAL COUNTERPART TO THE FIRST ADVANCED the Pan-STARRS1 images to set limits on the luminosities of possible sources. The Pan-STARRS1 images reach limiting magnitudes of $i_{P1} = 19.2, 20.0$ and 20.8 resp. tively for the three timescales. For long timescale parameterised lightcurves (w) FWHM \simeq 40d) we set upper limits of $M_i \ge -17.2^{-0.9}_{+1.4}$ if the distance to GW150914 $D_L = 400 \pm 200$ Mpc. The number of type Ia SN we find in the survey is similar that expected from the cosmic SN rate, indicating a reasonably complete efficiency recovering supernova like transients out to $D_L = 400 \pm 200$ Mpc. As the final Lits sy maps changed during analysis, the total probability of the source being spatition of the survey capability of Pan-STARRS and spectroscopic capability of PESSTO. the Pan-STARRS1 images to set limits on the luminosities of possible sources. T

See also Evans et al. 2016

LIGO GRAVITATIONAL WAVE EVENT GW150914

(THE DES COLLABORATION)

Draft version February 19, 2016

ABSTRACT

We report initial results of a deep search for an optical counterpart to the gravitational wave event GW150914, the first trigger from the Advanced LIGO gravitational wave detectors. We used the Dark Energy Camera (DECam) to image a 102 deg^2 area, corresponding to 38% of the initial trigger highprobability sky region and to 11% of the revised high-probability region. We observed in i and z bands at 4–5, 7, and 24 days after the trigger. The median 5σ point-source limiting magnitudes of our search images are i = 22.5 and z = 21.8 mag. We processed the images through a difference-imaging pipeline using templates from pre-existing Dark Energy Survey data and publicly available DECam data. Due to missing template observations and other losses, our effective search area subtends 40 deg², corresponding to 12% total probability in the initial map and 3% of the final map. In this area, we search for objects that decline significantly between days 4-5 and day 7, and are undetectable by day 24, finding none to typical magnitude limits of i = 21.5, 21.1, 20.1 for object colors (i - z) = 1, 0, -1respectively. Our search demonstrates the feasibility of a dedicated search program with DECam and bodes well for future research in this emerging field.

Short GRBs as GW sources

Assuming n~4x10⁻³ cm⁻³, E~10⁴⁹ erg, θ_{iet} ~2 deg, θ_{obs} ~20 deg

Fong et al. (http://www.brera.inaf.it/Swift10/Talks/Fong.pdf)

Assuming n~4x10⁻³ cm⁻³, E~10⁴⁹ erg, θ_{jet} ~2 deg, θ_{obs} ~20 deg Fong et al. (http://www.brera.inaf.it/Swift10/Talks/Fong.pdf)

Kilonovae as possible GW counterparts

FIG. 1.— Top: Kilonova spectra from Barnes & Kasen (2013) at ~ 1 d and ~ 1 week with ejecta properties of $M_{\rm ej} = 10^{-2} M_{\odot}$ and $\beta_{\rm ej} = 0.2$. Bottom: Light curve for the same model parameters computed at a fiducial distance of 200 Mpc in the DECam r, *i*-and *z*-band filters.

Cowperthwaite & Berger 2015

Short GRBs: some conclusions

- Properties shared with long GRBs:
 - Flares
 - Plateaus
 - Similar scaling for prompt and afterglow emission
 - Same intrinsic N_H (on the same redshift bin)
- Evidences for compact binary merger progenitors:
 - No SNe
 - Different host galaxies (also early-type)
 - Associated to old stellar population
 - Hints for primordial, fast-merging, binary channel (z, offset, N_H)
 - No-host SGRBs (large offset? Dynamical channel?)
 - Possible Kilonova in some short GRB (smoking gun?)
 - Waiting for (more) GWs
- Perspectives:
 - systematic search for jet-breaks (true energetics and rate)
 - systematic search for associated kilonovae
 - GW EM counterparts

Observational reviews: Berger 2014, ARA&A, 52, 43; D'Avanzo, 2015, JHEAp, 7, 73