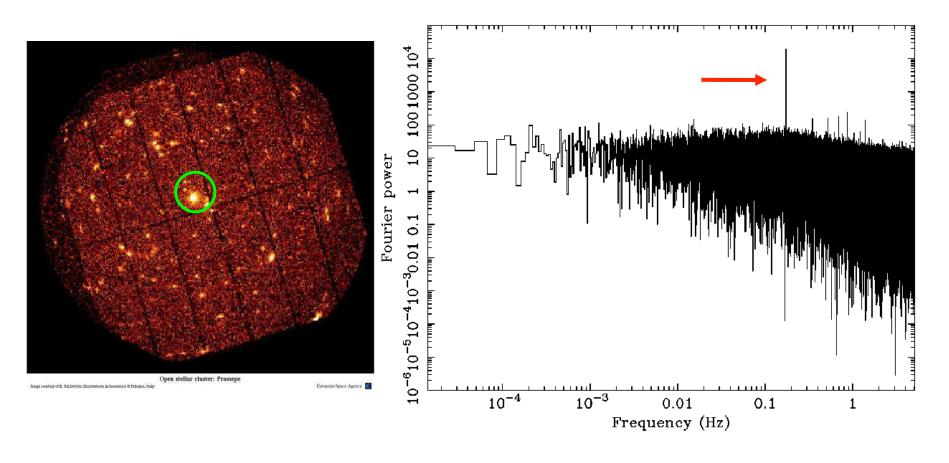


The CATS @ BAR WR/BH X-ray binaries

Paolo Esposito


+

G.L. Israel, L. Sidoli, L. Zampieri, M. Mapelli, D. Milisavljevic, G. Fabbiano

X-ray pulsators

Periodic signals are key to understand the nature of a source!

In general, modulation is discovered through timing analysis of the source targeted by an observation

X-ray pulsators

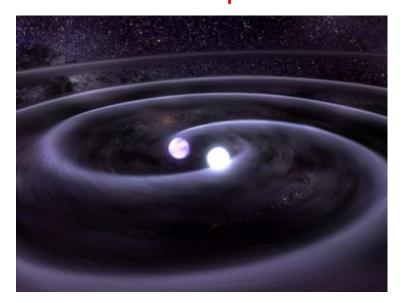
Periodic signals are key to understand the nature of a source!

In general, modulation is discovered through timing analysis of the source targeted by an observation

Faint X-ray sources can remain unidentified for years

~50,000 objects from past missions

>500,000 with XMM, Chandra, Swift


- Different populations of X-ray sources
- Interesting sources might lurk among them

Enormous discovery space in serendipitous sources

CXO DFS - CXC/NASA/Giacconi

Highlights from previous searches

- EXOSAT: 4U 0142+614, prototype of the AXP class (I+94)
- ROSAT PSPC: HD 49798, a very massive WD in a post common envelope phase (I+96, Mereghetti+09)
- ROSAT HRI: the 2-WD system HM Cnc (I+99,02; E+14), the binary with the shortest orbital period known: 5.4 min!

ormalized Count Rate

Our recent results

1RXS J225352.8+624354

(E+13, MNRAS 433, 2028)

CXOU J005047.9-731817

(E+13, MNRAS 433, 3464)

CXOU J123030.3+413853

(E+13, MNRAS 436, 3380)

CXOU J172005.9-311659

(E+14, MNRAS 441, 1126)

Sw J201424.9+152930

(E+15, MNRAS 450, 1705)

CXO J1414, J1413 & CG X-1

(E+15, MNRAS 452, 1112)

3XMM J004301.4+413017

(E+16, MNRAS in press)

X Persei-like low-luminosity persistent Be/XRB in a wide and circular orbit

Be/XRBs in the SMC, a whole type I burst fortuitously recorded in 17 obs

A 6.4-h part-time, borderline ULX, most likely a WR + BH system

An HMXB with off-states due to sudden transitions to ineffective accretion regime

The fourth totally eclipsing intermediate polar discovered in ~60 yr

New polars and another ULX / WR+BH candidate in the Circinus region

1st X-ray NS/psr in M31, likely an intermediate XRB akin to Her X-1

Our recent results

1RXS J225352.8+624354

(E+13, MNRAS 433, 2028)

CXOU J005047.9-731817

(E+13, MNRAS 433, 3464)

CXOU J123030.3+413853

(E+13, MNRAS 436, 3380)

CXOU J172005.9-311659

(E+14, MNRAS 441, 1126)

Sw J201424.9+152930

(E+15, MNRAS 450, 1705)

CXO J1414, J1413 & CG X-1

(E+15, MNRAS 452, 1112)

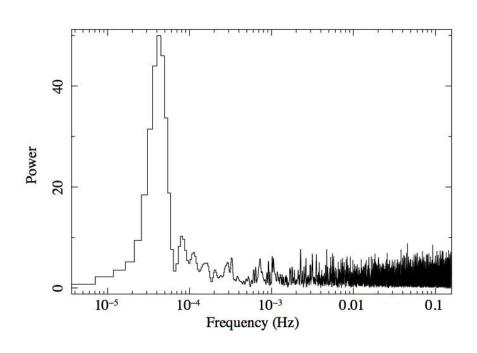
X Persei-like low-luminosity persistent Be/XRB in a wide and circular orbit

Be/XRBs in the SMC, a whole type I burst fortuitously recorded in 17 obs

A 6.4-h part-time, borderline ULX, most likely a WR + BH system

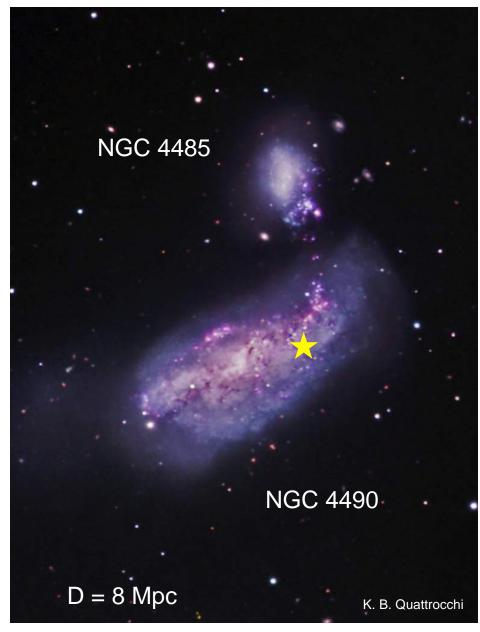
An HMXB with off-states due to sudden transitions to ineffective accretion regime

The fourth totally eclipsing intermediate polar discovered in ~60 yr

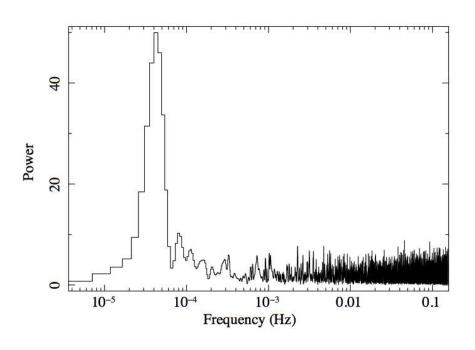

New polars and another ULX / WR+BH candidate in the Circinus region

3XMM J004301.4+413017

(E+16, MNRAS in press)

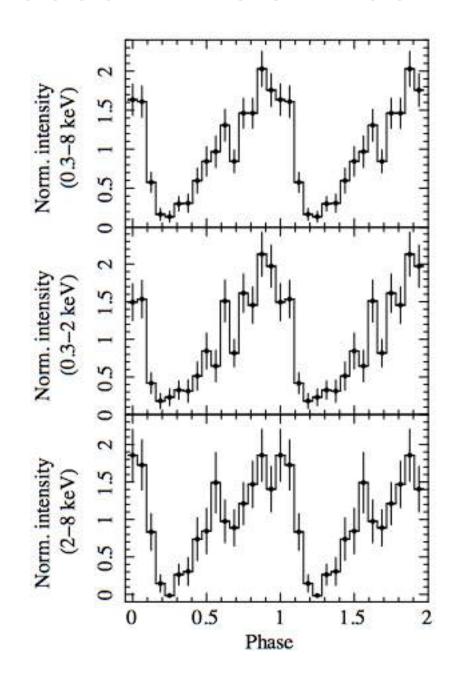

1st X-ray NS/psr in M31, likely an intermediate XRB akin to Her X-1

CXOU J123030.3+413853 in NGC 4490



- Multiple CXO observations
- Modulation at P = (6.4 ± 0.1) h (confirmed also by XMM)
- Pulsed fraction: ~90 per cent

(First observed by Roberts et al. 2002)

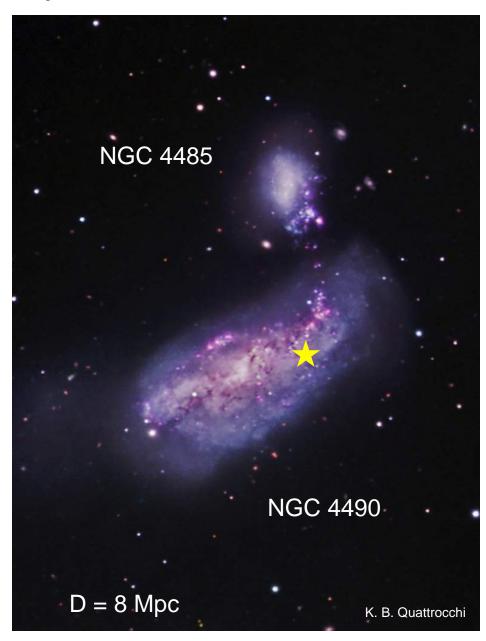


CXOU J123030.3+413853 in NGC 4490

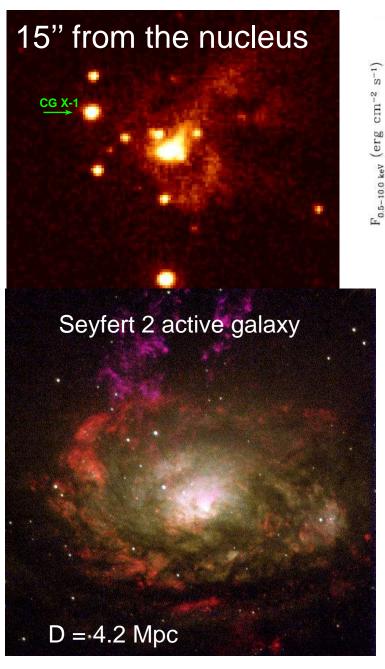
- Multiple CXO observations
- Modulation at P = (6.4 ± 0.1) h (confirmed also by XMM)
- Pulsed fraction: ~90 per cent

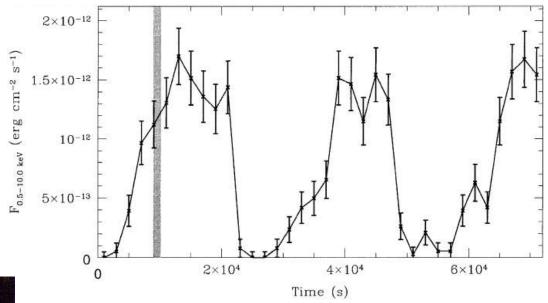
(First observed by Roberts et al. 2002)

A 6.4 hr BH binary in NGC 4490


NGC 4490 is a spiral galaxy interacting with the irregular NGC 4485

P = 6.4 h, 90% PF

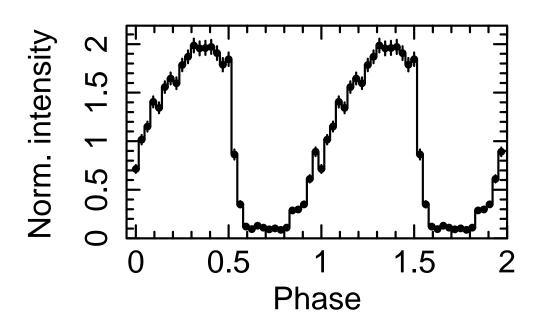

~2.5 kpc from NGC 4490's nucleus


L from ~ 0.2 to 2×10^{39} erg s⁻¹

L > L_E for a 5–10 M_☉ object (similar lower limit from diskbb fit)

Circinus Galaxy X-1

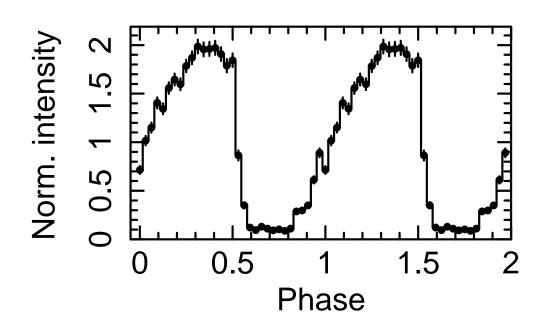
Bauer et al. 2001: P ~ 7.2 h


$$L_X = (1-5) \times 10^{40} \text{ erg s}^{-1}$$

See Weisskopk+2004

Strictly speaking, not a CATS@BAR source, we sort of bumped into it

 $P = 6.4 / 7.2 h, \sim 90\% PF$


 $L \sim 10^{38/39}$ and $10^{39/40}$ erg s⁻¹

 $P = 6.4 / 7.2 h, \sim 90\% PF$

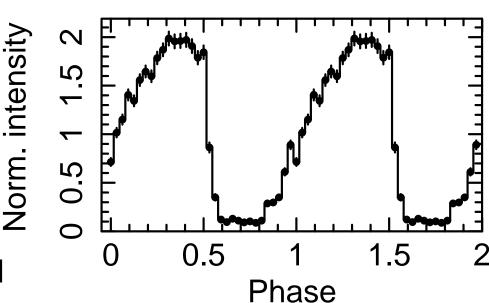
 $L \sim 10^{38/39}$ and $10^{39/40}$ erg s⁻¹

Foreground polars?

 $P = 6.4 / 7.2 h, \sim 90\% PF$

 $L \sim 10^{38/39}$ and $10^{39/40}$ erg s⁻¹

Foreground polars?


P < 0.03%

no counterparts, nH > Gal. nH

LMXBs:

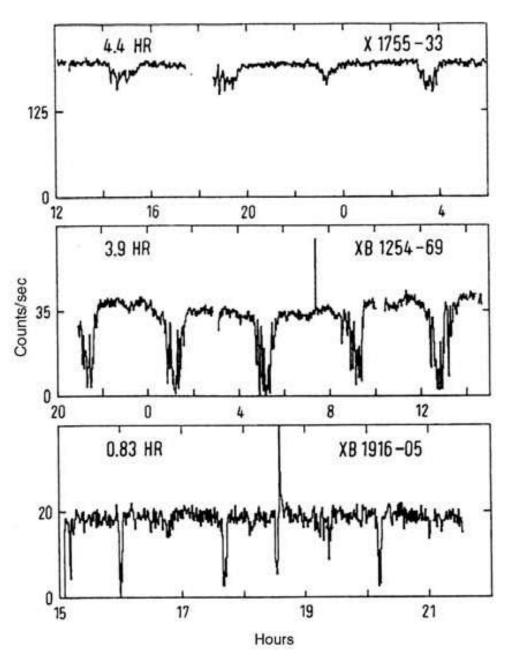
- Transients;
- Very different pulse profiles!

low-amplitude orbital modulation (if any): sharp eclipse ingresses/egresses (small X-ray emitting regions), dips

 $P = 6.4 / 7.2 h, \sim 90\% PF$

 $L \sim 10^{38/39}$ and $10^{39/40}$ erg s⁻¹

Foreground polars?


P < 0.03% no counterparts, nH > Gal. nH

LMXBs:

- Transients;
- Very different pulse profiles!

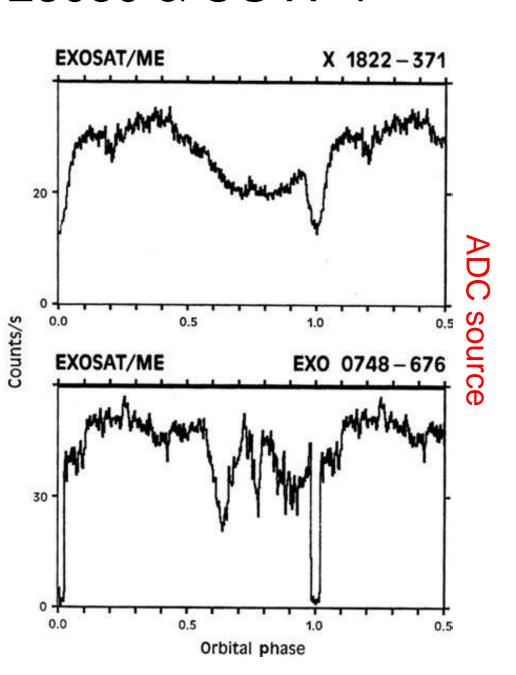
low-amplitude orbital modulation (if any): sharp eclipse ingresses/egresses (small X-ray emitting regions), dips

UNLIKELY!

 $P = 6.4 / 7.2 h, \sim 90\% PF$

 $L \sim 10^{38/39}$ and $10^{39/40}$ erg s⁻¹

Foreground polars?


P < 0.03% no counterparts, nH > Gal. nH

LMXBs:

- Transients;
- Very different pulse profiles!

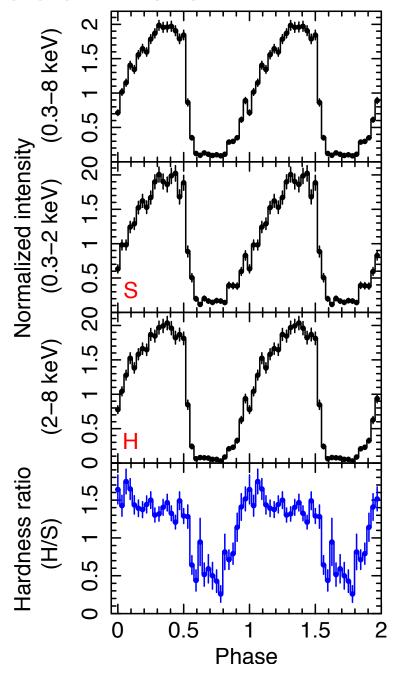
low-amplitude orbital modulation (if any): sharp eclipse ingresses/egresses (small X-ray emitting regions), dips

UNLIKELY!

 $P = 6.4 / 7.2 h, \sim 90\% PF$

 $L \sim 10^{38/39}$ and $10^{39/40}$ erg s⁻¹

Foreground polars?


P < 0.03% no counterparts, nH > Gal. nH

LMXBs:

- Transients;
- Very different pulse profiles!

low-amplitude orbital modulation (if any): sharp eclipse ingresses/egresses (small X-ray emitting regions), dips

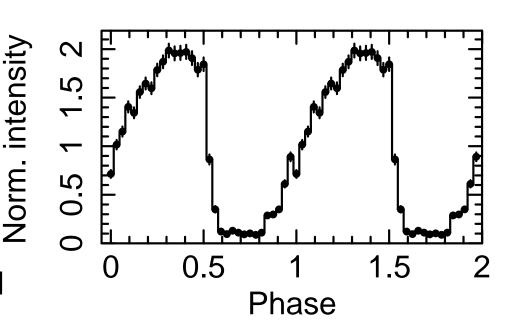
UNLIKELY!

 $P = 6.4 / 7.2 h, \sim 90\% PF$

 $L \sim 10^{38/39}$ and $10^{39/40}$ erg s⁻¹

Foreground polars?

P < 0.03%


no counterparts, nH > Gal. nH

LMXBs:

- Transients;
- Very different pulse profiles!

low-amplitude orbital modulation (if any): sharp eclipse ingresses/egresses (small X-ray emitting regions), dips

UNLIKELY!

HMXBs:

Possible only with a WR star

Wolf-Rayet stars

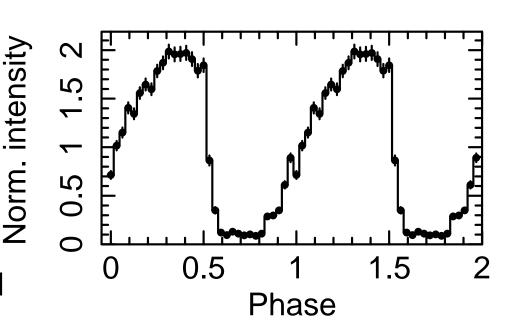
- Final phase (prior to core collapse) of massive stars
- H envelope stripped away via stellar wind or close binary evolution, revealing products of CNO (WN) or He burning (WC)
- Strong emission lines, intense (10⁻⁵ M_☉yr⁻¹), fast (~(1-3)×10³ km s⁻¹) winds
- Compact, R < 2R_☉ for M ~ 20M_☉

 $P = 6.4 / 7.2 h, \sim 90\% PF$

 $L \sim 10^{38/39}$ and $10^{39/40}$ erg s⁻¹

Foreground polars?

P < 0.03%

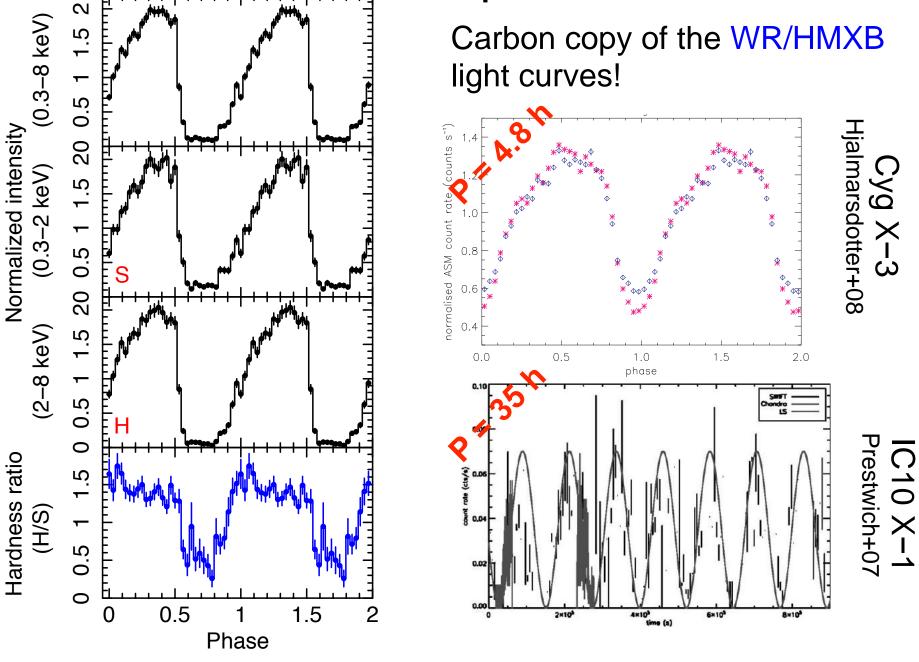

no counterparts, nH > Gal. nH

LMXBs:

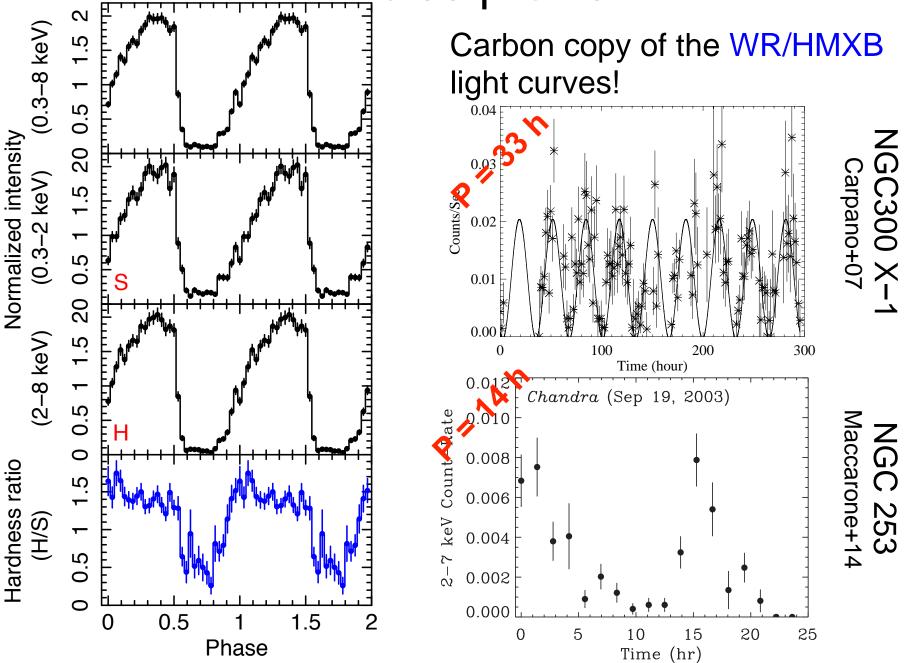
- Transients;
- Very different pulse profiles!

low-amplitude orbital modulation (if any): sharp eclipse ingresses/egresses (small X-ray emitting regions), dips

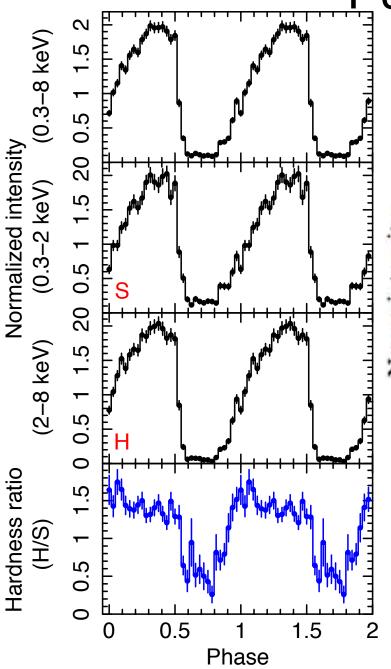
UNLIKELY!

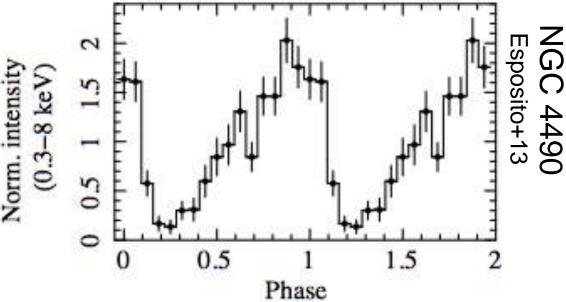

HMXBs:

Possible only with a WR star


WR + BH

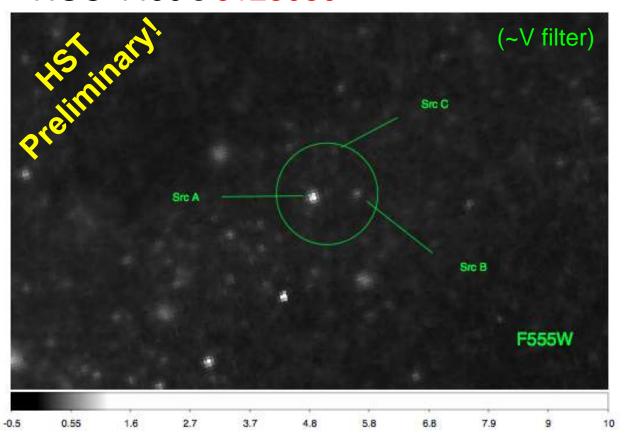
A NS cannot be excluded, $L_{\chi}\sim 10^{39}$ maybe 10^{40} erg s⁻¹ for the NuSTAR one in M82 (Bachetti+14)


Pulse profile


Pulse profile

Pulse profile

Carbon copy of the WR/HMXB light curves!



Signature pulse profile produced by absorption and Compton scattering of the X-rays through the WR stellar wind (even for *i* ~ 30°; Zdziarski et al. 2010)

Counterparts

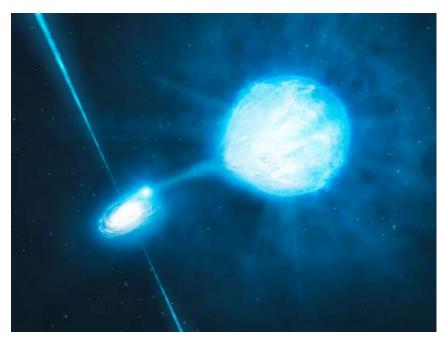
 M_V from -2.5 to -7 for WRs

NGC 4490's J123030

3 rather bright and blue objects

A
$$M_V = -6.4$$

B-V = -0.4


B
$$M_{V} = -4.8$$
 $B-V = -0.1$

$$C ext{ } ext{M}_{V} = -3.0 ext{ } ext{B-V} = -1.2 ext{ } ext{} ext{}$$

CG X-1

HST: $M_{V} > -6.8$

Luminosity

A BH needs a disc to shine

$$M_{\rm BH} \gtrsim 1.5 \, v_{\rm w, \, 1000}^4 \, \delta^2 \, \rm M_{\odot}$$

Carpano+2007; Illarionov & Sunyaev 1975

$$L_{
m X}pprox \eta rac{\dot{M}_{
m w}c^2G^2M_{
m BH}^2}{a^2v_{
m w}^4} \ \dot{M}_{
m w}=10^{-5}~{
m M}_{\odot}~{
m yr}^{-1} \ v_{
m w}=1000~{
m km~s}^{-1} \ \ ext{(e.g. Crowther 2007)}$$

 $L_X > 3 \times 10^{39} \text{ erg s}^{-1} \text{ for M} > 10 \text{ M}_{\odot}$

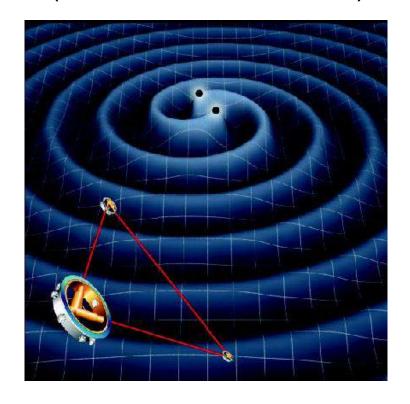
For CG X–1, L_X up to 2 × 10⁴⁰ erg s⁻¹ If L_E holds, M > 75 M_\odot for a He or C/O donor For 75 M_\odot : $L_X = 2 \times 10^{40}$ erg s⁻¹

Easily more with RLO Canonical stellar-mass BH if moderately beamed / super-Edd

```
Cyg X–3

2 M_{\odot} NS or a 3–5 M_{\odot} BH

P = 4.8 h, L ~ 10^{38} erg s<sup>-1</sup>
```


M101 ULX-1 >5 M_{\odot} BH; P = 8.2 d (Liu et al. 2013)

+ NGC 4490 and CG X-1 + candidate in NCG 253: P ~ 15 h, L ~ 10³⁸ erg s⁻¹ (Maccarone et al. 2014)

WR/BH binaries are the progenitors of 2BHs with merger time scales shorter than a Hubble time

NGC300 X-1 20 M $_{\odot}$ BH; P = 32.3 h (Carpano et al. 2007)

IC 10 X-1 33 M_{\odot} BH; P = 34.9 h (Prestwich et al. 2007)

Theoretical predictions from population synthesis: 0.4 < 20 < 1000 events/yr for aLIGO or Virgo (Abadie+2010)

Host galaxy	Source	Period	BH mass	WR mass	SFR	Z	$\overline{t_{ m GW}}$
		(h)	$({ m M}_{\odot})$	$({ m M}_{\odot})$	$({\rm M}_{\odot}~{\rm yr}^{-1})$	$({ m Z}_{\odot})$	(Gyr)
IC 10	X-1	34.9	33	35	0.07	0.22	1.4
NGC300	X-1	32.8	20	26	0.14	0.19	1.7
NGC 4490	CXO J123030 *	6.4	_	_	4.5	0.23	0.038
NGC 253	CXO J004732 $*$	14.5	_	_	4.0	0.24	0.33
Circinus	CGX-1*	7.2	_	_	1.5	0.10	0.052
M101	ULX-1	196.8	20	19	3.1	0.17	200
Milky Way	$\mathrm{Cyg}\mathrm{X} ext{}3$	4.8	3	7	0.25	0.31	0.051

Natal kick? Mass of the 2nd compact object?

- WR forms a 10 M_☉ BH via direct collapse
 - Orbital parameters left unchanged
- If BH mass unknown, we assume 10 M_☉

Host galaxy	Source	Period	BH mass	WR mass	SFR	Z	$t_{ m GW}$
		(h)	$({ m M}_{\odot})$	$({ m M}_{\odot})$	$(\mathrm{M}_{\odot}\ \mathrm{yr}^{-1})$	$({ m Z}_{\odot})$	(Gyr)
IC 10	X-1	34.9	33	35	0.07	0.22	1.4
NGC300	X-1	32.8	20	26	0.14	0.19	1.7
NGC 4490	$\rm CXOJ123030~*$	6.4	_	_	4.5	0.23	0.038
NGC 253	CXO J004732 $*$	14.5	_	_	4.0	0.24	0.33
Circinus	CGX-1*	7.2	_	_	1.5	0.10	0.052
M101	ULX-1	196.8	20	19	3.1	0.17	200
Milky Way	$\mathrm{Cyg}\mathrm{X} ext{}3$	4.8	3	7	0.25	0.31	0.051

$$R = \rho_{\rm SFR}(z) \sum_{i} (t_{\rm GW, i} + t_{\rm evol, i})^{-1} (\rm SFR_i)^{-1} \, \rm yr^{-1} \, Mpc^{-3}$$

$$t_{\rm GW} = \frac{5}{256} \frac{c^5 \, a^4 \, (1-e^2)^{7/2}}{G^3 \, m_1 \, m_2 \, (m_1+m_2)} \bullet \begin{array}{l} {\rm \rho_{SFR}(z) \, cosmic \, SFR \, density} \\ {\rm t_{evol} \sim \, 3 \, Myr} \end{array} \tag{Mapelli+2010}$$

Host galaxy	Source	Period	BH mass	WR mass	SFR	\overline{Z}	$\overline{t_{ m GW}}$
		(h)	$({ m M}_{\odot})$	$({ m M}_{\odot})$	$(\mathrm{M}_{\odot}\ \mathrm{yr}^{-1})$	$({ m Z}_{\odot})$	(Gyr)
IC 10	X-1	34.9	33	35	0.07	0.22	1.4
NGC300	X-1	32.8	20	26	0.14	0.19	1.7
NGC4490	CXO J123030 *	6.4	_	_	4.5	0.23	0.038
NGC253	CXO J004732 *	14.5	_	_	4.0	0.24	0.33
Circinus	CGX-1*	7.2	_	_	1.5	0.10	0.052
M101	ULX-1	196.8	20	19	3.1	0.17	200
Milky Way	$\mathrm{Cyg}\mathrm{X} ext{}3$	4.8	3	7	0.25	0.31	0.051

$$R = \rho_{\rm SFR}(z) \sum_{i} (t_{\rm GW, i} + t_{\rm evol, i})^{-1} (\rm SFR_i)^{-1} \, \rm yr^{-1} \, Mpc^{-3}$$

$$t_{\rm GW} = \frac{5}{256} \frac{c^5 \, a^4 \, (1-e^2)^{7/2}}{G^3 \, m_1 \, m_2 \, (m_1+m_2)} \bullet \quad \begin{array}{l} \rho_{\rm SFR}({\rm z}) \, {\rm cosmic \, SFR \, density} \\ \bullet \quad t_{\rm evol} \sim \ 3 \, {\rm Myr} \end{array} \tag{Mapelli+2010}$$

$$\rho_{SFR}(z = 0.3) \sim 3.6 \times 10^{-2} M_{\odot} \text{ yr}^{-1} \text{Mpc}^{-3}$$
 (Hopkins & Beacom 2006)

Host galaxy	Source	Period	BH mass	WR mass	SFR	Z	$t_{ m GW}$
		(h)	$({ m M}_{\odot})$	$({ m M}_{\odot})$	$({\rm M}_{\odot}~{\rm yr}^{-1})$	$({ m Z}_{\odot})$	(Gyr)
IC 10	X-1	34.9	33	35	0.07	0.22	1.4
NGC300	X-1	32.8	20	26	0.14	0.19	1.7
NGC4490	CXO J123030 *	6.4	_	_	4.5	0.23	0.038
NGC 253	CXO J004732 *	14.5	_	_	4.0	0.24	0.33
Circinus	CGX-1*	7.2	_	_	1.5	0.10	0.052
M101	ULX-1	196.8	20	19	3.1	0.17	200
Milky Way	$\mathrm{Cyg}\mathrm{X} ext{}3$	4.8	3	7	0.25	0.31	0.051

$$R = \rho_{\rm SFR}(z) \sum_{i} (t_{\rm GW, i} + t_{\rm evol, i})^{-1} (\rm SFR_{\it i})^{-1} \, \rm yr^{-1} \, Mpc^{-3}$$

$$t_{\rm GW} = \frac{5}{256} \frac{c^5 \, a^4 \, (1-e^2)^{7/2}}{G^3 \, m_1 \, m_2 \, (m_1+m_2)} \bullet \begin{array}{l} {\rm \rho_{SFR}(z) \, cosmic \, SFR \, density} \\ {\rm t_{evol} \sim \, 3 \, Myr} \end{array} \tag{Mapelli+2010}$$

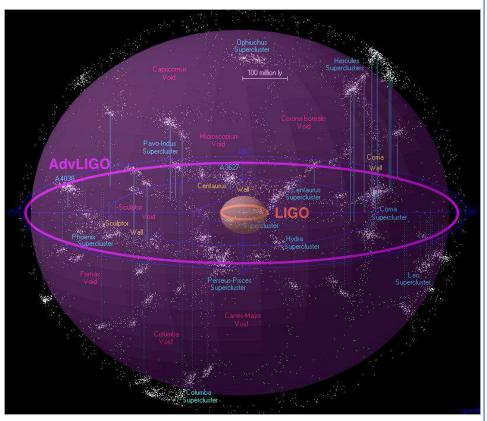
<16 yr⁻¹ for distance range 1 Gpc

 $0.4 < 20 < 1000 \text{ yr}^{-1} \text{ (Abadie+2010) / } ~10 \text{ yr}^{-1} \text{ (1.4 Gpc) (Maccarone+2014)}$

The Future - I

CATS @ BAR

- Every 3/4 months we run the pipeline on the new ACIS data; new pulsars are coming
 - Z²-like algorithms, better suited for lowcounts sources
 - X-ray/optical follow-ups & classification
 - Search the XMM EPIC archive (EXTraS)



NGC 4490's 6.4 h BH binary

- Identification of the companion star
- Dynamical measurement of the BH mass
- New estimates of the metallicity of NGC 4490/85

The Future - II

- Dearth of WR HMXBs. Yet they should be relatively common and very bright. Are there others known systems which may have been misclassified?
- The sample is still small, but growing (from 3 to 7 in 2 yr!)
- Can a significant fraction of ULXs be powered by WRs?
- Stellar massive BHs >20 M_☉
- Population synthesis and common envelope phase
- Rate of (stellar) 2-BH mergers to be seen (Advanced Ligo)

