

advanced exposure time calculator

A web tool to simulate astronomical imaging instruments

M.Uslenghi – astrosiesta 8 Ottobre 2015

D.Fantinel, R.Falomo (OAPd)

AETC

- [web]tool to simulate images of astrophysical objects obtained with any combination of telescope, instrument and filter
 - \Rightarrow count rates and photon distribution over the focal plane
- → detailed simulation of the observed fields including stars, galaxies and any kind of astronomical object

Nearby galaxy cluster. WFC@INT

M51-like galaxy @z=2.4. MICADO@E-ELT

Why AETC?

- ETCs are crucial both in planning observations and in developing new instruments
- Possibility to change the parameters of the adopted instrumentation and/or the conditions of the observation → important !!!
- The main trigger has been the study of science cases for
 ELT/MAORY+MICADO → focus on realistic^(*) simulations of the field images
 - "Realistic":
 - PSF variable in the FoV
 - Large variety of targets (stars, galaxies modeled by sersic law, but also more complex obj...)

Pre-configured instruments

(currently available)

	Telescope	Instrument
•	HST	WFPC2
•	JWST	NIRcam
	VLT	FORS
-	ELT	MICADO
2.	TNG	NICS
		DOLORES
	REM	ROSS
1		REMIR
	LBT	LBC

The templates can be also used as starting point for a new configuration (all the parameters can be changed by the user)

WEB Interface

		<u> </u>		
← → C	🐉 📋 aetc.oapd.inaf.it Rookmarks 🔗 IDOMANDAI Convie 🔓 Google 🍸 miniprojectif 🍁 Freesound or a - sou 🛛 🚜 USUN Batteria/cari 🔜 🚜 Pelikan Textmark	Q C	🖌 🔽 😒	efe
A				
	Advanced Exposure Time Calculator			
	Standard Empty_template COAD			
	O Light			
	O User defined			
	O Batch			
	(Hep)	Examples		
NUMBER OF			000000	
·				
	Tools			
	Object Generator ® Stars Galaxies On Sky Object Distribution Scegi file Nessun file selezionato Clear GO	Help		
	Contact us			
				1.11
•				,

- GUI to set all the parameters
 Batch mode to perform
 - multiple simulations

AETC (SEND)	
Object MicadoH Save input configuration as	select ▼ select
Telescope and Instrument Specification	Aluminium UT1_optics
Primary mirror Ø (cm) 3900 Number of reflection 5 Fraction of Obstruction 0.28	the second second
Plate Scale (arcsec/pixel) 0.003 Readout Noise (e ⁻) 5	select ▼ select
Mirror Reflectivity: • Constant 1 • Table select • User File	FORS_optics REM_ross
Instrument Efficiency: • Constant 1 • Table select • User File	REM_remir
Detector Efficiency: • Constant 0.4 • Table select	select select
Sky	REM_ccd REM IBarray
Air Mass 1	LBC_blue LBC_red
Sky Brightness: • Constant Mag/arcsec ² 15.0 Band H • Mag System Vega • Table select	Blue Red E-ELT_Micado
User File	select Vicentral
Atmospheric Absorption: • Rayleigh (m) 2000 Table select • User File No Extinction Observation Parameters	select Ks-central Zodiacal_Light H-maory-cube
Observation Band: ○ λ range Å ● Table H ▼ ● By User File	Calar_Alto I-maory-cube Cerro_Tololo J-maory-cube
Total Exposure Time (sec) 1000 Number of Exposure 10 Aperture Ø (arcsec) 0.012	Kitt_Peak La_Silla JWST_Nircam
Encircled Energy:	Paranal J
Fixed	MtGraham K
PSF function 2D PSF Table H-central PSF Tiser File	F450W
PSF map: • Uniform Objection by File X-FoV (arcsec) 0 Y-FoV (arcsec) 0	F702W F814W

	Sky
1. 1. 1	Air Mass 1
	Sky Brightness: • Constant Mag/arcsec ^a 15.0 Band H Mag System Vega • Table • User File
	Atmospheric Absorption: • Rayleigh (m) 2000 • Table select • User File • No Ext
	Observation Parameters
-1. 5	Observation Band: Δ range Å • Table H • By User File
	Total Exposure Time (sec) 1000 Number of Exposure 10 Aperture Ø (arcsec) 0.012
1.14	Encircled Energy:
2	O Fixed
	 Seeing Limited
	PSF function 2D PSF Table H-central PSF User File
	PSF map: • Uniform • Distortion by File X _C FoV (arcsec) 0 Y _C FoV (arcsec) 0
	Source Specifications
	SED: Black Body O Power Law O Template Table vega • User File
1 2.1	Flux: • Computed Magnitude 20 Band H • Mag System Vega • Direct In
	Image Simulator
	No Image Real Time Background
1	X size 100 Y size 100 Gain 1 FPN 0.0 Dark 0 Rad min 2
	Saturation Level 65535 Threshold 0.01 System Coordinates 0 Spline Deg 5
	Subtract Background 🗹
4	Stars

select

ction

				e in the	
		* N 1	A 🔩 🧶		
PSF					
Encircled Energy:	Q Eived				
Fixed	- Fixed				
PSF function 2D PSF Table H-central	Seeing Limited s PSF User File PSF	eeing function select V FWHM (arcsec select Gauss Moffat			a great for
PSF map: Uniform Distortion by File X _C FoV (arcsec)	0 Y _C FoV (arcsec) 0	1914 1911			
Number of used DSE (for 3D DSE function) 2	and the second second				7

Seeing limited: Gauss or Moffat function of a given FWHM
1D radial intensity profile selecting one of the available PSF tables or a user file
2D fits image
3D fits data cube (PSF(x,y))
X Y FWHM(ratio) Ellipticity Posi
500 700 1.00 0.00

How to model a PSF variable in the FOV?

1	Tramp	TE OT FPF		ap •	
	Х	Y	FWHM(ratio)	Ellipticity	Position_Angle
	500	700	1.00	0.00	0
	600	700	1.07	0.08	20
	700	700	1.14	0.16	40
	800	700	1.21	0.24	60
	900	700	1.28	0.32	80

- 1) Reference PSF at given position + distortion file/distortion map
- 2) PSF on a grid -> interpolate the PSF at the x,y position

Instruments

evelopme

Sec. March	Source Specifications	and the second second	
	Redshift 0		
	SED: Black Body Power Law • Template Table vega • User File		
Sec. S.	Flux: • Computed Magnitude 20 Band H • Mag System Vega • Direct Input	and the second sec	
	Image Simulator		
	O No Image O Real Time O Background	· · · · · · · · · · · · · · · · · · ·	and the second
14.14	X size 100 Y size 100 Gain 1 FPN 0.0 Dark 0 Rad min 20		
	Saturation Level 65535 Threshold 0.01 System Coordinates 0 Spline Deg 5		a section of
	Number of used PSF (for 3D PSF function) 2 Convolution standard • PSF Filter 🗹 Add Noise 🗹		
	Subtract Background 🗹	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a far si ta
	Stars		
	Galaxies		
	□ Objects		1. A
a second	Functions	Sec. 1. 12 March	
•	Results:		
1. 1. 1.	Input Configuration Ø Outputs (Fluxes, S/N, kMag) Ø Sensitivity Graphs(λ) S/N vs Exptime		
	SEND	and the second second	1 1 1 1
al and			
· · · ·			J. J. C.
			• • • • • • • • • • • • • • • • • • •
		1911 - 19	
· .			A. C. S. C.
		an da an	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Input So	urces	• User File Scegli file Nessun file selezio	onato	vega vega vega Stars o5v b0v a0v f2v g0v k0iii m0v Galaxies Elliptical Disc_S0
Redshift 0	* Template Table uppa			Disc_Sa Disc_Sb AGN qso_francis
Flux: • Computed Magnitude 20	Band H • Mag System Vega •	O Direct Input	 Reference Rest 	nce source: frame SED
	# # 321	Xpix Ypix Magnit	^{ude} • Flux/	'magnitude
Stars	Sources to be	# Re is in ar # position an	csec gle PA in degrees	
Galaxies Objects	included in the image	<pre># # Xpix Ypix 100.1 100.1 200.8 200.4 300.3 300.2 400.6 400.7</pre>	magSersicIndex15.84.019.52.520.01.417.12.1	ReellipticityPA3.00.00.5.80.290.12.70.345.0.850.10.
Functions	# Xpix Ypix 320 7 450	500.5 500.9 x mag tex 3 17.0 objtem	18.0 5.8 mplate_file Δ" plate1_fits 1.0	15.9 0.1 180.
STAR = starlist.dat STAR = starlist2.dat GALAXY = gallist.dat GAUSS = spots.dat	620.0 650 652.7 654 1300.1 1450	.3 18.7 objtem .2 19.3 objtem .0 12.5 objtem	plate2.fits 2.5 plate3.fits 5.1 plate4.fits 10.7	

Object generator

- tool for creating lists of astronomical objects (→AETC input):
 - Build a list of objects with given input population parameters, distribution of magnitude, spatial distribution in the FoV:
 - Stars
 - Galaxies
 - Extract a sub-list from a user-provided list

Object generator: stars

		o	bject Generator				
Input Population: Fiel	d of view (arcsec) 600	Objects 1500	Brightest mag 18	Faintest ma	ıg 24		
Distribution of magnitude:	Power law Index 0.3	O User defined	Law				
Spatial distribution in the FoV:							
Linear gradient							
Radial gradient							
 User defined Law 	Sfoglia profile2.txt	Clear in the	range X _{min} 0.05	Xmax 300	centered in	X (arcsec) 300	Y (arcsec) 300

 Stellar Population:
 Total objects: 1500
 Brightest Mag: 18.0
 Faintest Mag: 24.0

 Field of View:
 600.0 (arcsec)
 600.0 (arcsec)
 Power law Index: 0.3

Spatial Distribution: User definded law from file: SpatialDistrib.txt

On Sky Object Distribution

On Sky Object Distribution (arcsec): star2015_02_18_10_18_48.txt

Object generator: galaxies

Input Population:	Field of view (arcsec)	300	Objects 100	Brightest mag 15.8	Faintest mag 22
Distribution of magnit	ude: O Power I	aw Index 0.5	User defined Law	Sfoglia GalMagDistr	ib.txt Clear
atial distribution in the	ioV:				
Linear gradient	G x 0.6	Gy 1			
Radial gradient					
User defined Law					
Galaxy Field Generato	arcsec): Min 2		20	aw Inday 1	
Effective Radius (Max	Powert	aw muck i	
Effective Radius (Sersic Number:	Min 1	Max 4	Power Law Index	1	
Effective Radius (Sersic Number: Ellipticity:	Min 1	Max 4 Max 0.7	Power Law Index Power Law Index	1	
Effective Radius (Sersic Number: Ellipticity: PA (deg): S	Min 1 Min 0	Max 4 Max 0.7 End 180	Power Law Index Power Law Index Power Law Index Power Law Index 1 Power Law Index 1		
Effective Radius (Sersic Number: Ellipticity: PA (deg): S	Min 1 Min 0	Max 4 Max 0.7 End 180	Power Law Index Power Law Index Power Law Index 1 Power Law Index 1		CREATE

On Sky Object Distribution

Faintest Mag: 20.0 Total objects: 100 Brightest Mag: 15.8 ar Population:

of View 300.0 (arcsec)

User definded law from file: GalMagDistrib.txt tude Distribution:

Linear x=0.6 y=1.0 al Distribution:

Effective radius: 2.0-20.0 Index=1.0 Sersic Number: 1.0-4.0 Index=1.0

Ellipticity: 0.0-0.7 Index=1.0 PA: 0.0-180.0 Index=1.0

On Sky Object Distribution (arcsec): galaxy2015_02_18_10_52_14.txt

OG: Sky Field Extractor

Map the object list on the detector

Input configuration: summary of all input parameters

Input Configuration

 Output (Fluxes, S/N,..): output counts and the expected Signal-to-Noise ratio.

Input configuration

Air Mass: 1 Exposure time: 1000 sec Number of exposure: 10 Aperture Ø: 0.012 arcsec Number of reflections: 5 Input: mag: 20, band: H, mag system: Vega Object: MicadoH Instrument efficiency: 1 Photometric system: UBVRI Bessel Observation band: BX 🖸 3700.0 - 5500.0 Å Function file: No Function file Detector efficiency: 0.4 Primary mirror diameter: 3900 cm Fraction of obstruction: 0.28 Plate scale: 0.003 arcsec/pixel Mirror reflectivity: 1 Atmospheric Absorption: Rayleigh: at 2000m Star file: No Star file Galaxy file: No Galaxy file Encircled Energy: 0.32 (psf function: 2D, psf file: E-ELT_Micado H-central) Single Object - SED: Stars vega (900.0 - 100000.0) Å Sky Brightness: mag: 15.0, band: H, mag system: Vega Redshift: 0 Readout noise: 5 e-Object file: No Object file

AETC version: 4.0 Date: 2015-10-07 18:10:00 Simulator: aetc_15_06_15.pro

Outputs (Fluxes, S/N, kMag)

Results:

✓ Sensitivity Graphs(λ)

S/N vs Exptime

Aperture Output Signals:

S/N area: 12.6 px **Collecting area:** 11009347.0298 cm² **Zero Point:** 31.69 **Source:** 1.531018e+07 ph/aper/expT **StoN:** 3911.19 **Background:** 1.246547e+04 ph/aper/expT (0.99 ph/sec/px) **Effective wavelenght:** 4434.0 Å **Extinction at λeff:** 0.17

 Sensitivity Graphs: plots of the input source, passband and the troughput

Outputs (Fluxes, S/N, kMag)

Input Configuration

Results:

Sensitivity Graphs(λ)

S/N vs Exptime

S/N vs Exptime: plot on the trend of the S/N against the exposure time

Input Configuration

Signal/Noise (Point Source)

Results:

✓ Sensitivity Graphs(λ)

Outputs (Fluxes, S/N, kMag)

Simulation Setup convolution: standard rad min: 20 FPN: 0.0 add noise: yes dark: 0 subtract background: yes gain: 1 y size: 100 threshold: 0.01 saturation level: 65535 x size: 100

SAVE Image (fits)

S/N vs Exptime

AETC info: Simulation program finished successfully in 1.29 sec

- Input configuration: summary of all input parameters
- Output (Fluxes,S/N,..): output counts and the expected Signal-to-Noise ratio
- Sensitivity Graphs: plots of the input source, passband and the troughput
- S/N vs Exptime: plot on the trend of the S/N against the exposure time
- Images !!!!

	Image Simulator
• No Image • Real Time • Background	
X size 100 Y size 100 Gain 1	FPN 0.0 Dark 0 Rad min 20
Saturation Level 65535 Threshold 0.01	System Coordinates 0 Spline Deg 5
Number of used PSF (for 3D PSF function) 2	Convolution standard v PSF Filter d Add Noise d
Subtract Background 🖉	
Stars	
Galaxies	
Objects	
Functions	

Sensitivity Graphs()

S/N vs Exptir

Example: star cluster

J-band observations of a star cluster in a nearby galaxy with MICADO@E-ELT.

Total exposure time: 3h
input star list (465567 stars):
host galaxy body: spatially uniform distribution of stars, magnitudes calculated assuming a constant star formation rate over the last 12 Gyr,

star cluster: stars distributed according to a King-like profile. Magnitudes taken along theoretical isocrones

> Probing the nuclear star cluster of galaxies with extremely large telescopes. Gullieuszik et al. (2014, A&A Vol.568,11)

Example: star cluster

OT: simulation of spad array+ASTRI

Non standard detector: AETC has been used to produce the distribution of the photons on the focal plane but the detector has been simulated with a module developed in IDL

8x8 array 50um/250um with microlens U band, magU=6, texp=300s

8x8 array 50um/250um with microlens U band, magU=6, texp=300s

ELTCam science cases with AETC

- L. Greggio et al. *Properties of High Redshift Galaxies in the ELTs Era*, IAU General Assembly, Meeting #29,2015
- L.Greggio et al. *Studying Stellar Halos with Future Facilities,* IAU General Assembly, Meeting #29,2015
- L. Schreiber et al. Studying the metallicity gradient in Virgo ellipticals with European-Extremely Large Telescope photometry of resolved stars, MNRAS 437, issue 3, p.2966, 2014
 - *M.* Gullieuszik et al. Probing the nuclear star cluster of galaxies with extremely large telescopes, A&A 568, 2014
- L.Greggio et al. Resolved Stellar Population of Distant Galaxies in the ELT Era, PASP 124, issue 917, p.653, 2012