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. Overview

Emission from rotation-powered pulsars
X-ray pulsar emissionig1741 & J1813
Future prospects & a new XMM-Newton tool




classical” pulsars

Rotation-powered

A. De Luca/P. Esposito
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Rotation-powered emission

PSRs as rotating,
magnetized NSs radiating at

expense of rotational energy _Ligh
ylinder

E,..: ~ 10°°-10% erg/s
Efficiency n; = Li/E,

outer gap

Nradio ~ 10°
n, ~ 10°
il ~10°

Pulsar engine not yet
understood




Ra

and v-ray bands
Radio pulsars: ¥ V pulsars:
22100 since 24 " v\ >160 since
- Hewish+68, listed in® Campbell+73, listed in |
ATNF PSRs database 2P0
Thousands of articles & Only seven psrs before
spanning 50 years =~ " Fermi(2008); tens of

articles since then

Curvature radiation from

Synchrotron radiation
from the inner
magnetosphere (polar
cap?)




Spectral Energy Distribution
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Spectral Energy Distribution

ﬂﬁ%ﬁf
+

-
. *

f

Ll ....I.IX. Lol .IXM

T T T T

RXTE Total Pulsed

OSSE

COMPTEL

EGRET Total Pulsed
ROSAT Pulsed Blackbody
Chandra Point Source
Chandra PL Envelope
Optical

T T T
ool

| ! L .
10O , 1
107 10
Energy (MeV)

O
Energy [MeV]

Radiation Type Radio Microwawve Infrared Visible Ultrawviolet X-ray Gamma ray
Wavelength [(m) 10° 10" 1072 0.5=<10 % 1078 1010 1012

| |

1D4 1D3 1':}'2 -.“:]15 -Iﬂ'llﬁ 1.:}1-\5

Temperature of
objects at which g
this radiation is the (§

most intense N PN, ==
| o HLOG 10,000,000 K
wavelength emitted Q727 °C st




Multiwavelenath emission
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Radio and v-ray simulations
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Radio and v-ray simulations

(d) ICE
a=55
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Radio and v-ray simulations
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In particular, the best
results came from
simultaneous radio-y-
ray simulations.

Pierbattista+14
tested different
emission models and
“found” the geometry
of ~120 Fermi
pulsars
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“X-ray band - 1

Lack of X-ray surveys, few telescopes with adequate
time/spectral resolution result in dishomogeneous
observations (Os to 1Ms)

Few, incomplete catalogs in literature: Becker09 (45 psrs),
Marelli+11&2PC (49 psrs)

Many observational papers but few theoretical paper
focussed on X-ray emission

(Thermal, non-thermal, nebular emissions mixed)

Synchrotron radiation from particlesiin outer
magnetosphere is thought to produce,a broad spectrum of
emission from infrared to up to 10 MeVW&.. but it works only
for the Crab (no phase lag!) |




% Overview

X-ray pulsar emissionig1741 & J1813
Future prospects & a new XMM-Newton tool




% J1741-2054

Bright y-ray source located 5° from the plane, at a

distance of about 400 pc (DM)

Parkes detected it as a radio-faint pulsar —
= 0.16 mJy (Camilo+09)

flux density

(1400MHz)
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Slow&Low energetic — P =413 ms, E=9x 10® erg s*

Marelli+14

PSR J1741-2054
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0.7-10 keV
4% Blackbody

BB and PL ~40% pulsed gg%Bng:rro tig
Thermal and non-thermal -
peaks in phase

X, radio, y-ray peaks out
of phase

No y-ray spectral variation
with phase

X-ray spectral variation
with phase
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J1741 = X-ray phase-resolved

FPhase-resolved model parameters
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% J1813-1246
Located 2.5° from the plane, > 2.5 kpc
Bright in y-rays & radio quiet |

2" most energetic radio-quiet pulsar (E = 6.3 x 10* erg s)
and the fastest one (P = 48.1ms)

PSR J1813-1246
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(@ J1818 — X-ray light curve ()

VERY pulsed
PF=(96+£3) %

Two asymmetric peaks
phase lag 0.496+0.001
Off-pulse emission
(170)
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No spectral variation
with phase down to
0.08iInT (30)




PSR J1813-1246

O

counts

Two asymmetric peaks
phase lag 0.485+0.003
No off-pulse emission

oton Index Mormalized

Very significant (>>100)
spectral variation with
phase, mainly due to I,
with softening during
EELE

il

Photorn Flux

1.5
(10 ph cm?s™)




J1818 — MWL light curve

X-ray (0.3-10 keV) y-ray (>0.1 GeV)

Normalized, weighted counts
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J1813 —'new geometrical model

1.0

magnetic inclination
angle of 60°

a) simulated y-ray
emission for a separatrix
layer model from outer
magnetosphere

b) simulated cone beam
X-ray emission from the
polar caps for an
emission altitude 0.2 R _

c) Model y-ray and X-ray
light curves for a viewing
angle of 90°
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Future prospects & a new XMM-Newton tool




“X-ray band - 2
87 X-ray psrs

43 puls. 45 not puls.

22 pow 17 pow+bb 2bb 27? 33 pow 7pow+bb 3bb 27?2

i ) "
14 X-ray psrs with “good” non-thermal light curve

and spectrum

A comprehensive, multiwavelength study of the
spectra and light-curves of these pulsars is

necessary to build a model!
— MY FUTURE WORK'—




A new tool for X-ray band

In y-rays, photon In X-rays, positional
weighting based on uncertainties are ~10
position and spectrum lower, but...

resulted to be a winning
method to minimize

source contamination, %
coming from high

positional uncertainties.

We have much more
point-like and extended
sources and we have a
possibly high
background, so that...
This Increases the
sensitivity to pulsars by
more than 50% under a
wide range of

conditions (Kerr+11)

We'should test a similar
method

»~




wton photon weighting

| am developing a python program that evaluates
for each photon the probability of coming from one
of the sources in an input list

Input: event file, sources positions, sources
spectra, sources spatial extension and shape

Y

Output: probability columns\n event file, different
band simulated & subtracted\mages

Tests on the first versions revealed an
improvement ranging from 1.1 to¥ of the H-value
in a pulsation search of six known'¥-ray pulsars
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“An example...
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Observed Simulated

Subtracted % Marelli+ in prep
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There are some :t_requencres we were never meant to find. s e,

WWW.TOUARENDWINFECTED.COM

*_‘...'

-

ol i t" A‘ Y
oy h vt
> i e

(Thank you for
the attention!)
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