MORLA, THE FAST TURTLE-PULSAR

Milano, 2012 September 27th

10357 + 3205

12

16 ×

15 ¥

Starring : <u>M. Marelli</u>, A. De Luca, D. Salvetti, N. Sartore, A. Sartori, P. Caraveo, F. Pizzolato

11

10

De Luca et al. 2011, ApJ 733, 104 Marelli et al. 2012 submitted to ApJ De Luca et al. 2012, Science, in preparation

Seen by Fermi from the early observations, it is an off-plane bright source in the y-ray sky (1/100 of Vela flux) (Abdo, A.A. et al. 2009, ApJ, 700, 597)

O J0357+32

Seen by Fermi from the early observations, it is an off-plane bright source in the y-ray sky (1/100 of Vela flux) (Abdo, A.A. et al. 2009, ApJ, 700, 597)

After 3 months: it pulses! It's one of the first radio-quiet pulsar detected (Abdo, A.A. Et al. 2009, Sci, 325, 840)

10357 + 32

A VERY interesting pulsar...

One of the less energetic y-ray pulsar : E_{rot} =6*10³³ erg/s (4th, the winner is J2139+4716 with 3*10³³ erg/s)
One of the oldest y-ray pulsar : tc = 540 kyr (9th, the winner is J0106+4855 with 3080 kyr)

- The slowest γ-ray pulsar : P = 444 ms (1st!)

A VERY interesting pulsar...

One of the less energetic γ-ray pulsar : E_{rot}=6*10³³ erg/s (4th, the winner is J2139+4716 with 3*10³³ erg/s)
One of the electron of the ele

Bright, low energetics, off-plane -> Near

Morla, the Ancient One

75 ks Chandra ACIS-S observation (u.l. 10⁻¹⁵ erg/cm²s) + Deep Optical/IR imaging (u.l., 26.8 , u.l., 21.4)

LATerrorcircle

Timing

10"

X counterpart detected! ~ 530 counts Flux sim 5*10⁻¹⁴ erg/cm²s $F_x/F_y > 520$ $F_y/F_x \sim 1000$ Powerlaw spectrum $n_H \sim 10^{21} \text{ cm}^{-2}$ p.i. ~ 2.5

But, on a larger scale...

- > 9' in length => 1.3 pc (if d = 500 pc and i = 0) - flux_{tail} ~ 5*flux no tail detection < 50" from pulsar asymmetric profiles, with maximum at 4'

5 arcmin

New Chandra campaign: detect the PM!

2 new 30 ks Chandra observations each 2 years. First observation done!

530 counts

180 counts

Detected (5sigma)! 165+/-30 mas/yr => 400 km/s at 500 pc and i=0 direction : opposite the tail, parallel to the galactic plane This makes the turtle quite fast... (more than the rabbit)

Contemporaneous XMM campaign: detect the pulsation/study the tail!

110 ks XMM-Newton Large Window

15 X

The pulsar

- Thermal component found: T ~ 10^{6} K , R ~ 450 m T < $4*10^{5}$ K (very cold!)

The pulsar

And... pulsations! By folding at the Fermi ephemerides, with a chance probability of 3*10⁻⁶

The tail

A powerlaw well fits the total spectrum

BUT... the pulsar, nebular and galactic n_u doesn't match!

No variations between Chandra and XMM data (tail's features confirmed)

No spatial/spectral variations down to 0.2 in the p.i.

Synchrotron Nebula : X-rays are due to synchrotron emission from the wind particles accelerated at the termination shock

- low pulsar E_{rot} : maximum post-shock wind electron energy sim 5 TeV. Assuming the local magnetic field to be of order 10 µG, no synchrotron radiation at E>50 eV would be expected. - lack of wind termination shock : unresolved if $n_{ISM} = n*100$ atoms/cm³ or $v_{PSR} = n*1000$ km/s; ok it i>70° (=>longer tail) - lack of emission around the pulsar, where acceletation of the wind

particles is maximum

- asymmetric brightness profile: synchrotron nebula emission only marginally dependent to ${\rm n}_{\rm ISM}$
- the low synchrotron cooling time would imply a spatial/spectral variation of the nebula
- disagreement between fitted galactic, pulsar and nebular n

Model Rejected!

Bremsstrahlung Nebula : X-rays come from the shocked ISM material heated up to X-ray temperature nebula well fitted (chi²_{red} = 1.06) by a bremmstrahlung model, with n_H in agreement with the pulsar one and lower than the galactic one; similar models bring to a low metallicity of ISM

Bremsstrahlung Nebula : X-rays come from the shocked ISM material heated up to X-ray temperature - nebula well fitted ($chi_{red}^2 = 1.06$) by a bremmstrahlung model, with n_{H} in agreement with the pulsar one and lower than the galactic one; similar models bring to a low metallicity of ISM

Bremsstrahlung Nebula : X-rays come from the shocked ISM material heated up to X-ray temperature

- nebula well fitted ($chi_{red}^2 = 1.06$) by a bremmstrahlung model, with n_{H} in agreement with the pulsar one and lower than the galactic one; similar models bring to a low metallicity of ISM

- energetically acceptable if $v_{PSR} \sim 1900 \text{ km/s}$: ok if i>75° (this makes Morla the fastest pulsar known!). Required $n_{ISM} \sim 1 \text{ atoms/cm}^3$ and $T_{ISM} = n*10^5 \text{ K}$ (ok if "local bubble"); problem : low fitted metallicity of ISM

- volume emissivity proportional to n^2_{ISM} so that a variation of ~2 in the density can explain the asymmetric profiles

- $t_{cool} \sim 10^7$ yr : it fully explain the lack of spatial/spectral variation. The "low age" of the tail (~3*10³ yr) can be explained with a variation of ~3 in the n_{ISM}

lack of diffuse emission surrounding the pulsar: kinetic energy mainly trasferred to ions; electrons must be heated by the ions. t_{transfer} ~ 200 yr:
ok Model Plausible!

We also find 300pc<d_PSR<2kpc !

Conclusions

- We have studied one of the most extreme Fermi pulsar : very slow, old and with a low energetics

- We have found the X counterpart

- We have fitted its spectrum: non-thermal emission, hot spot thermal emission and we placed upper limit on the surface temperature (cold!)

- We have found an hint of pulsations (the 3rd RQ pulsar!)

- We have found the pulsar proper motion (maybe the fastest known pulsar!)

- We have found a big X-ray trail not consistent with the classical synchrotron model

- We have developed a new model for the trail based on bremsstrahlung emission (turtle-tail nebulae)

MORLA (and its nebula) Thanks for your attention J0357+3205

